Useful links
This unit provides an introduction to modern computationally intensive algorithms, their implementation and application for carrying out statistical inference on econometric models. Students will learn modern programming techniques such as Monte Carlo simulation and parallel computing to solve econometric problems. The computational methods of inference include Bayesian approach, bootstrapping and other iterative algorithms for estimation of parameters in complex econometric models. Meanwhile, students will be able to acquire at least one statistical programming language.
Code | ECMT3170 |
---|---|
Academic unit | Economics |
Credit points | 6 |
Prerequisites:
?
|
ECMT2160 or ECMT2110 |
---|---|
Corequisites:
?
|
None |
Prohibitions:
?
|
None |
At the completion of this unit, you should be able to:
Unit outlines will be available 1 week before the first day of teaching for the relevant session.
Key dates through the academic year, including teaching periods, census, payment deadlines and exams.
Enrolment, course planning, fees, graduation, support services, student IT
Code of Conduct for Students, Conditions of Enrollment, University Privacy Statement, Academic Integrity
Academic appeals process, special consideration, rules and guidelines, advice and support
Policy register, policy search
Scholarships, interest free loans, bursaries, money management
Learning Centre, faculty and school programs, Library, online resources
Student Centre, counselling & psychological services, University Health Service, general health and wellbeing