Skip to main content
Unit of study_

ELEC5101: Antennas and Propagation

2024 unit information

The basics of antenna radiation are introduced with emphasis on the important performance characteristics of the radiation field pattern (in 3 dimensions) and feed impedance. The omnidirectional and Hertzian dipole antennas (both hypothetical in practise but robust theoretically) provide the starting point to analyse real antenna operation. Mutual coupling between close antennas and important 'ground' imaging effects lead to the design of antenna arrays to increase gain and directivity. Aperture antennas and frequency broadbanding techniques are introduced. Ionospheric propagation is discussed and also the the reception efficiency of receiving antennas which allows consideration of a Transmitter - Receiver 'Link budget'. The important 'Pocklington' equation for a wire dipole is developed from Maxwell's equations and leads to the numerical analysis of wire antennas using 'Moment' methods. Real world applications are emphasised throughout and are reinforced by the hands on laboratory program which includes design projects.

Unit details and rules

Managing faculty or University school:

Engineering

Study level Postgraduate
Academic unit Electrical and Information Engineering
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
None

At the completion of this unit, you should be able to:

  • LO1. analyse and design solutions for antennas operating up to and including the microwave frequency level, by drawing on concepts and principles of antenna theory and practice
  • LO2. demonstrate an understanding of antenna theory and practise
  • LO3. demonstrate an understanding of antenna performance, as well as signal propagation and the associated link budget to the extent of the material presented
  • LO4. demonstrate an understanding of the process of designing a broad variety of antenna systems using principles, concepts and tools taught throughout the course
  • LO5. demonstrate an ability to develop the fundamental 'Pocklington Equation' for wire antennas which leads to the powerful computer based 'Moment Method' of analysis
  • LO6. write and maintain a laboratory log book to communicate problem-solving activities by using clear and concise language, sketches and diagrams at a technical level fitting for the tasks performed
  • LO7. conduct team work by assuming various roles as needed, demonstrating initiative and receptiveness to the viewpoints of others in the group so as to tackle and test design challenges.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 2 2024
Normal day Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 2 2020
Normal day Camperdown/Darlington, Sydney
Semester 2 2021
Normal day Camperdown/Darlington, Sydney
Semester 2 2021
Normal day Remote
Semester 2 2022
Normal day Camperdown/Darlington, Sydney
Semester 2 2022
Normal day Remote
Semester 2 2023
Normal day Camperdown/Darlington, Sydney

Find your current year census dates

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.