Skip to main content

During 2021 we will continue to support students who need to study remotely due to the ongoing impacts of COVID-19 and travel restrictions. Make sure you check the location code when selecting a unit outline or choosing your units of study in Sydney Student. Find out more about what these codes mean. Both remote and on-campus locations have the same learning activities and assessments, however teaching staff may vary. More information about face-to-face teaching and assessment arrangements for each unit will be provided on Canvas.

Unit of study_

MATH1011: Applications of Calculus

This unit is designed for science students who do not intend to undertake higher year mathematics and statistics. It establishes and reinforces the fundamentals of calculus, illustrated where possible with context and applications. Specifically, it demonstrates the use of (differential) calculus in solving optimisation problems and of (integral) calculus in measuring how a system accumulates over time. Topics studied include the fitting of data to various functions, the interpretation and manipulation of periodic functions and the evaluation of commonly occurring summations. Differential calculus is extended to functions of two variables and integration techniques include integration by substitution and the evaluation of integrals of infinite type.

Details

Academic unit Mathematics and Statistics Academic Operations
Unit code MATH1011
Unit name Applications of Calculus
Session, year
? 
Semester 1, 2021
Attendance mode Normal day
Location Remote
Credit points 3

Enrolment rules

Prohibitions
? 
MATH1001 or MATH1901 or MATH1906 or BIOM1003 or ENVX1001 or MATH1021 or MATH1921 or MATH1931
Prerequisites
? 
None
Corequisites
? 
None
Assumed knowledge
? 

HSC Mathematics. Students who have not completed HSC Mathematics (or equivalent) are strongly advised to take the Mathematics Bridging Course (offered in February). Please note: this unit does not normally lead to a major in Mathematics or Statistics or Financial Mathematics and Statistics.

Available to study abroad and exchange students

Yes

Teaching staff and contact details

Coordinator Clio Cresswell, clio.cresswell@sydney.edu.au
Administrative staff MATH1011@sydney.edu.au
Type Description Weight Due Length
Final exam (Record+) Type B final exam Final Exam
Written calculations and multiple choice
65% Formal exam period 1.5 hours
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8
Assignment Assignment 1
Written calculations
2.5% Week 03
Due date: 18 Mar 2021

Closing date: 28 Mar 2021
One week
Outcomes assessed: LO2 LO3
Online task Quiz 1
Written calculations
12.5% Week 07
Due date: 20 Apr 2021

Closing date: 20 Apr 2021
40 Minutes
Outcomes assessed: LO1 LO4 LO3 LO2
Assignment Assignment 2
Written calculations
7.5% Week 09
Due date: 06 May 2021

Closing date: 16 May 2021
One week
Outcomes assessed: LO1 LO5 LO4
Online task Quiz 2
Written calculations
12.5% Week 12
Due date: 25 May 2021

Closing date: 25 May 2021
40 Minutes
Outcomes assessed: LO4 LO7 LO6 LO5 LO1
Type B final exam = Type B final exam ?

Below are brief assessment details. Further information can be found in the Canvas site for this unit.

  • Assessments: There are two assignments, which must be submitted electronically, as PDF files only, in Canvas by the deadline. Note that your assignment will not be marked if it is illegible or if it is submitted sideways or upside down. It is your responsibility to check that your assignment has been submitted correctly.  Penalties apply for late submission. A mark of zero will be awarded for all submissions more than 10 days past the original due date. Further extensions past this time will not be permitted.

  • Quizzes: Quizzes will be held online in Canvas. The quizzes are 40 minutes. The better mark principle will be used for the quizzes so do not submit an application for Special Consideration or Special Arrangements if you miss a quiz. The better mark principle means that for each quiz, the quiz counts if and only if it is better than or equal to your exam mark. If your quiz mark is less than your exam mark, the exam mark will be used for that portion of your assessment instead.

  • Examination: Further information about the exam will be made available at a later date on Canvas.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

At HD level, a student demonstrates a flair for the subject as well as a detailed and comprehensive understanding of the unit material. A ‘High Distinction’ reflects exceptional achievement and is awarded to a student who demonstrates the ability to apply their subject knowledge and understanding to produce original solutions for novel or highly complex problems and/or comprehensive critical discussions of theoretical concepts.

Distinction

75 - 84

At DI level, a student demonstrates an aptitude for the subject and a well-developed understanding of the unit material. A ‘Distinction’ reflects excellent achievement and is awarded to a student who demonstrates an ability to apply their subject knowledge and understanding of the subject to produce good solutions for challenging problems and/or a reasonably well-developed critical analysis of theoretical concepts.

Credit

65 - 74

At CR level, a student demonstrates a good command and knowledge of the unit material. A ‘Credit’ reflects solid achievement and is awarded to a student who has a broad general understanding of the unit material and can solve routine problems and/or identify and superficially discuss theoretical concepts.

Pass

50 - 64

At PS level, a student demonstrates proficiency in the unit material. A ‘Pass’ reflects satisfactory achievement and is awarded to a student who has threshold knowledge.

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see sydney.edu.au/students/guide-to-grades.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

Special consideration

If you experience short-term circumstances beyond your control, such as illness, injury or misadventure or if you have essential commitments which impact your preparation or performance in an assessment, you may be eligible for special consideration or special arrangements.

Academic integrity

The Current Student website provides information on academic honesty, academic dishonesty, and the resources available to all students.

The University expects students and staff to act ethically and honestly and will treat all allegations of academic dishonesty or plagiarism seriously.

We use similarity detection software to detect potential instances of plagiarism or other forms of academic dishonesty. If such matches indicate evidence of plagiarism or other forms of dishonesty, your teacher is required to report your work for further investigation.

WK Topic Learning activity Learning outcomes
Week 01 Periodicity. (2 hr) LO1 LO3
Week 02 Scaling Data. (3 hr) LO1 LO2
Week 03 Scaling Data and Finite Differences. (3 hr) LO1 LO2
Week 04 Optimisation: One Variable Problems. (3 hr) LO1 LO4
Week 05 Optimisation: One Variable Problems (continued). (3 hr) LO1 LO4
Week 06 Optimisation: Two Variable Problems. (3 hr) LO1
Week 07 Optimisation: Two Variable Problems (continued). (3 hr) LO5
Week 08 Method of Least Squares. (3 hr) LO1 LO5
Week 09 Finite Sums. (3 hr) LO1 LO6
Week 10 The Definite Integral. (3 hr) LO7
Week 11 The Indefinite Integral. (3 hr) LO1 LO7
Week 12 Applications of Integration. (3 hr) LO8

Attendance and class requirements

Due to the exceptional circumstances caused by the COVID-19 pandemic, attendance requirements for this unit of study have been amended. Where on-campus or online tutorials/workshops/laboratories have been scheduled, students should make every effort to attend and participate at the scheduled time. If you are unable to attend for any reason (e.g. health or technical issues) you should and attend another session, if available. Penalties will not apply if you cannot attend your scheduled class.

  • Attendance: Students are expected to attend a minimum of 80% of timetabled activities for a unit of study, unless granted exemption by the Associate Dean. For some units of study the minimum attendance requirement, as specified in the relevant table of units or the unit of study outline, may be greater than 80%.
  • Tutorial attendance: Tutorials (one per week) start in Week 2. You should attend the tutorial given on your personal timetable. Attendance at tutorials will be recorded. Your attendance will not be recorded unless you attend the tutorial in which you are enrolled. While there is no penalty if 80% attendance is not met we strongly recommend you attend tutorials regularly to keep up with the material and to engage with the tutorial questions. Since there is no assessment associated with the tutorials do not submit an application for Special Consideration or Special Arrangements for missed tutorials.

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 3 credit point unit, this equates to roughly 60-75 hours of student effort in total.

Required readings

  • Applications of Calculus (Course Notes for MATH1011) are available for purchase from Kop ystop, 55 Mountain St, Broadway.
  • Reference book: James Stewart. Calculus. Cengage Learning. 8th Edition, Metric Version, 2015, ISBN 978-1-305-26672-8.
    Available from the Co-op Bookshop.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University’s graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. analyse practical problems using techniques from differential and integral calculus;
  • LO2. fit as appropriate a linear, polynomial, exponential or a periodic function to a set of experimental data;
  • LO3. sketch the generalised sinusoidal functions;
  • LO4. use differential calculus to solve optimisation problems in one independent variable;
  • LO5. calculate the partial derivatives of functions of two variables, and hence to solve optimisation problems in two independent variables;
  • LO6. calculate finite sums and use the sigma notation where appropriate;
  • LO7. evaluate definite integrals and use definite integrals in applications;
  • LO8. determine when improper integrals of infinite type exist.

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9
Minor changes were made to the weighting for the quizzes and second assignment.
  • Tutorials: Tutorials start in week 2. You should attend the tutorial given on your personal timetable. Attendance at tutorials will be recorded. Your attendance will not be recorded unless you attend the tutorial in which you are enrolled. If you are
    absent from a tutorial do not apply for Special Consideration or Special Arrangement, since there is no assessment associated
    with the missed tutorial.
  • Tutorial and exercise sheets: The question sheets for a given week will be available on the MATH1011 webpage. Solutions to tutorial exercises for week n will usually be posted on the web by the afternoon of the Friday of week n.
  • Ed Discussion forum: https://edstem.org

Disclaimer

The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.