Skip to main content
Unit of study_

MATH4314: Representation Theory

Representation theory is the abstract study of the possible types of symmetry in all dimensions. It is a fundamental area of algebra with applications throughout mathematics and physics: the methods of representation theory lead to conceptual and practical simplification of any problem in linear algebra where symmetry is present. This unit will introduce you to the basic notions of modules over associative algebras and representations of groups, and the ways in which these objects can be classified. You will learn the special properties that distinguish the representation theory of finite groups over the complex numbers, and also the unifying principles which are common to the representation theory of a wider range of algebraic structures. By learning the key concepts of representation theory you will also start to appreciate the power of category-theoretic approaches to mathematics. The mental framework you will acquire from this unit of study will enable you both to solve computational problems in linear algebra and to create new mathematical theory.


Academic unit Mathematics and Statistics Academic Operations
Unit code MATH4314
Unit name Representation Theory
Session, year
Semester 1, 2022
Attendance mode Normal day
Location Remote
Credit points 6

Enrolment rules

Assumed knowledge

Familiarity with abstract algebra, specifically vector space theory and basic group theory, e.g., MATH2922 or MATH2961 or equivalent

Available to study abroad and exchange students


Teaching staff and contact details

Coordinator Andrew Mathas,
Lecturer(s) Andrew Mathas ,
Type Description Weight Due Length
Oral exam
Final take home exam
Oral exam
60% Formal exam period 50 minutes
Outcomes assessed: LO1 LO2 LO3 LO5 LO7
Assignment Assignment 1
20% Week 07 3 to 5 questions
Outcomes assessed: LO1 LO2 LO3 LO5 LO6
Assignment Assignment 2
20% Week 12 3 to 5 questions
Outcomes assessed: LO2 LO4 LO5 LO6 LO7
  • Assignments: The assignments will require you to demonstrate ability to apply the theory developed in lectures and tutorials to produce your own arguments or perform calculations with particular classes of objects.
  • Final exam: The exam will cover all material in the unit from both lectures and tutorials. The exam will consist of extended answer questions.

    If a second replacement exam is required, this exam may be delivered via an alternative assessment method, such as a viva voce (oral exam). The alternative assessment will meet the same learning outcomes as the original exam. The format of the alternative assessment will be determined by the unit coordinator. 

Detailed information for each assessment can be found on Canvas

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range


High distinction

85 - 100

At HD level, a student demonstrates a flair for the subject as well as a detailed and comprehensive understanding of the unit material. A ‘High Distinction’ reflects exceptional achievement and is awarded to a student who demonstrates the ability to apply their subject knowledge and understanding to produce original solutions for novel or highly complex problems and/or comprehensive critical discussions of theoretical concepts.


75 - 84

At DI level, a student demonstrates an aptitude for the subject and a well-developed understanding of the unit material. A ‘Distinction’ reflects excellent achievement and is awarded to a student who demonstrates an ability to apply their subject knowledge and understanding of the subject to produce good solutions for challenging problems and/or a reasonably well-developed critical analysis of theoretical concepts.


65 - 74

At CR level, a student demonstrates a good command and knowledge of the unit material. A ‘Credit’ reflects solid achievement and is awarded to a student who has a broad general understanding of the unit material and can solve routine problems and/or identify and superficially discuss theoretical concepts.


50 - 64

At PS level, a student demonstrates proficiency in the unit material. A ‘Pass’ reflects satisfactory achievement and is awarded to a student who has threshold knowledge.


0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

Special consideration

If you experience short-term circumstances beyond your control, such as illness, injury or misadventure or if you have essential commitments which impact your preparation or performance in an assessment, you may be eligible for special consideration or special arrangements.

Academic integrity

The Current Student website provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

You may only use artificial intelligence and writing assistance tools in assessment tasks if you are permitted to by your unit coordinator, and if you do use them, you must also acknowledge this in your work, either in a footnote or an acknowledgement section.

Studiosity is permitted for postgraduate units unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission.

WK Topic Learning activity Learning outcomes
Week 01 Motivation and basics of representation theory Lecture and tutorial (4 hr)  
Week 02 Internal structure Lecture and tutorial (4 hr)  
Week 03 Uniqueness of decomposition Lecture and tutorial (4 hr)  
Week 04 Artin-Wedderburn theory Lecture and tutorial (4 hr)  
Week 05 Basics of representation of finite groups Lecture and tutorial (4 hr)  
Week 06 Basics of multilinear algebra Lecture and tutorial (4 hr)  
Week 07 Character tables Lecture and tutorial (4 hr)  
Week 08 Frobenius-Schur indicators Lecture and tutorial (4 hr)  
Week 09 Induced representations Lecture and tutorial (4 hr)  
Week 10 Frobenius reciprocity Lecture and tutorial (4 hr)  
Week 11 Representations of the symmetric group Lecture and tutorial (4 hr)  
Week 12 Symmetric functions Lecture and tutorial (4 hr)  
Week 13 Revision Lecture and tutorial (4 hr)  

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University’s graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. Demonstrate a coherent and advanced understanding of the key concepts of representations of associative algebras, groups and other algebraic structures, and how they provide a unified approach to the study of symmetry.
  • LO2. Apply the fundamental principles and results of representation theory to solve given problems.
  • LO3. Distinguish and compare the properties of different types of representations, analysing them into constituent parts.
  • LO4. Rephrase algebraic problems in representation-theoretic terms and determine the appropriate framework to solve them.
  • LO5. Communicate coherent mathematical arguments appropriately to student and expert audiences, both orally and through written work.
  • LO6. Devise computational solutions to complex problems in representation theory.
  • LO7. Compose correct proofs of unfamiliar general results in representation theory.

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
No changes have been made since this unit was last offered


The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.