Illustrated graphic depicting nodes in network with some binary code in the the background

Modelling and simulation

Quantifying critical dynamics of an interconnected world

Using the theory and quantitative methods of guided self-organisation, large-scale complex networks and distributed computation, we aim to improve prevention and management of techno-socio-economic and environmental crises.

Modern smart cities, infrastructure and ecosystems are susceptible to abrupt, large-scale and disruptive dynamics. Cascading power failures, traffic disruptions, epidemic outbreaks, financial and housing market crashes, and ecosystem collapses are all manifestations of critical phenomena.

Our aim is to produce new cross-disciplinary methods for understanding and managing complex systems, based on information theory, distributed and high-performance computation, network theory, agent-based simulation, dynamical systems, game theory, machine learning, computational epidemiology, econophysics and systems biology.

This cross-disciplinary research leverages our expertise in engineering and computational sciences and involves collaborations across physics, mathematics, biology and social sciences. Research outcomes have an impact on diverse areas such as:

  • disaster and emergency management
  • large-scale epidemic modelling
  • organisational and social risk management
  • economic crisis forecasting
  • the stability of power grids, communication and transport systems.

Our research

Our research brings together several areas that investigate and innovate with complexity, including the Centre for Complex Systems, the Centre for Translational Data Science and the Centre for Distributed and High Performance Computing.

Our key research areas are crisis and pandemic modelling and complex networks. We are also involved in several international collaborations related to complex systems.

Crisis and pandemic modelling

Modelling diverse impacts of a major crisis, such as the COVID-19 pandemic, across multiple scales ranging from microbiology to epidemiology to social dynamics quickly becomes intractable.

A significant problem is the presence of feedback loops, with interventions and changes in social behaviour putting an evolutionary pressure on pathogens and causing the emergence of potentially even more transmissible variants.

We approach these challenges by combining (i) stochastic agent-based models which provide robust tools for tracing fine-grained effects of complex scenarios and intervention strategies with (ii) methods of socio-physics that capture multiscale feedback dynamics and identify critical regimes.

Our experts: Professor Mikhail Prokopenko, Professor Vitali Sintchenko, Professor Tania Sorrell

Our partners: Mr Timothy Germann (Los Alamos National Lab, USA)

We aim to develop high-resolution computational models for pandemic mitigation and control, focussing on the novel coronavirus and its emerging variants, and leveraging demographic, genomic and epidemiological data.

We intend to rigorously compare multi-scale effects of complex vaccination and social distancing strategies and quantify optimal responses under the COVID-19 induced uncertainty.

The intended outcomes include computational models of how the most infectious viral variants emerge and spread in presence of interventions, how to predict the outbreaks, and which are the most vulnerable communities.

This should make a significant economic and social impact, improving population health while maintaining a resilient economy.

Related story: Pandemic peak in sight – but we must brace for an infection surge

Our experts: Professor Mikhail Prokopenko,  Professor Vitali Sintchenko, Professor Tania Sorrell, Dr Arunima Malik

Our partners: Professor Stuart Kauffman (Institute for Systems Biology, USA)

Our project aims to greatly improve the accuracy and scope of computational epidemiological models predicting emergence and evolution of foodborne diseases in Australia.

It expects to reveal key pathways for both biological evolution of microorganisms, and their spread though food supply chains and human interactions.

The intended outcomes include discovering how the most dominant strains of foodborne infection emerge and self-organise in complex networks, how to predict and contain the epidemics closer to their source, and which are the most vulnerable groups and communities.

This should make a significant economic and social impact, improving health of the population, while also safeguarding national and international supply chains.

Related story: More severe salmonella outbreaks ahead

Our experts: Professor Mikhail Prokopenko, Professor Pip Pattison, Associate Professor Joseph Lizier, Associate Professor Mahendra Piraveenan

Our partners: Associate Professor Manoj Gambhir (IBM Research, Australia), Mr Timothy Germann (Los Alamos National Lab, USA)

The project aims to considerably improve the accuracy and scope of modern computational epidemiological models. It integrates large-scale census datasets and explicitly simulates the entire population down to the level of single individuals, coupled with complex network-based and information flow analysis. The intended outcomes include a more precise and efficient forecasting of critical epidemic dynamics.

Related story: We will find a way to predict the spread of disease

Our experts: Professor Mikhail Prokopenko, Dr Michael Harré

Our partners: Professor Doyne J Farmer (University of Oxford, UK), Mr Paul Ormerod (Volterra Partners, UK), Dr Markus Brede (University of Southampton, UK)

This project aims to improve our understanding of the housing market in Australia by using better modelling, simulation and prediction of the systemic risks and potential crises it faces. We combine datasets from the Australian Bureau of Statistics, census data and mortgage market data into a simulation of individual family homes and their financial tensions, in order to stress test various policies at different scales.

Our experts: Professor Mikhail Prokopenko, Professor Tania Sorrell, Associate Professor Vitali Sintchenko, Dr Ramil Nigmatullin, Dr Richard Spinney

This project integrates research strengths in epidemiological and computational modelling of distributed systems and complex networks, including prediction of critical dynamics during epidemics. It aims to develop a novel computational framework for analysis and modelling of food-borne disease dynamics.

Complex networks

Networks are ubiquitous in today’s world. Communication networks are changing the way we live and interact. Social networks are redefining the ways we keep in touch. Transport networks give us access to the remotest parts of the world. The energy needed for our domestic and industrial use is supplied by electric power networks. Human survival depends on the functioning of a number of biological and ecological networks.

In complex networks the ability to function effectively arises not from individual nodes of that network, but from the way they interact. This means a complex network cannot be completely understood by examining each of its parts in isolation, and that the structure and function of such networks are tightly coupled: function is constrained by structure and structure evolves due to function. Research into the structure, function, evolution, and design of complex networks has wide-ranging applications, from epidemiological modelling to optimising distributed computation. 

Our experts: Associate Professor Joseph Lizier

Our partners: Professor Michael Wibral (Goethe University, Frankfurt, Germany), Ms Viola Priesemann (Max Planck Institute for Dynamics and Self-Organisation, Göttingen, Germany).

This project seeks to develop a general understanding of how network connectivity and dynamics are related by:

  • providing fundamental theoretic explanations of how network structure gives rise to dynamical properties of network activity
  • describing how structure can be designed to produce desired dynamics
  • inferring hidden network structure from observed dynamics.

Our experts: Professor Mikhail Prokopenko, Dr Eduardo Altmann, Professor Deborah Bunker, Professor Roland Fletcher, Associate Professor Joseph Lizier, Professor Richard Miles, Dr Ramil Nigmatullin, Dr Daniel Penny, Dr Somwrita Sarkar, Mr Tony Sleigh
Our partner: Paul Ormerod (Volterra Partners, UK)

The CRISIS research program is developing a novel cross-disciplinary framework for analysis, modelling and design of adaptive urban systems resilient to stresses, using advanced techniques from complex systems, network science, agent-based computational modelling, and dynamical systems. To evaluate this general framework we selected two settlement areas with distinct features and different histories yet of similar physical size and urban landscape: the Greater Sydney area in the 20th and 21st centuries and Greater Angkor area in the 13th and 14th centuries. 

Our experts: Professor Albert Zomaya, Professor Mikhail Prokopenko, Associate Professor Mahendra Piraveenan

Security concerns are increasingly at the forefront in today’s world. A complex network’s topology plays an important role in determining how the network can resist random and targeted attacks. It has been shown that scale-free networks display high resilience to random attacks, and yet these networks are vulnerable to targeted attacks. Is it possible to design network topologies so that they display high levels of tolerance to both types of attacks? This project attempts to define robust measures for complex networks that are particularly useful in sustained attack scenarios, and test their effectiveness in various domains, including computer networks, the Internet and the World Wide Web, social networks, and biological networks inside organisms.

International collaborations

Our key collaborators in Australia include DST Group, CSIRO, IBM Research, and various state and federal government agencies. We also actively engage with the Santa Fe Institute for Complex Systems, Los Alamos National Laboratory and Harvard University in the United States, the University of British Columbia in Canada, the Institute for New Economic Thinking at Oxford University, other universities in the United Kingdom and several Max Planck institutes in Germany.

Our experts: Professor Mikhail Prokopenko, Dr Richard Spinney

Our partner: Dr Dominique Chu (University of Kent, UK)

The overarching aim of this project is to develop a theory of biological and cellular computing. This will lead to an information-theoretic assessment of the distributed computation in physical systems and an understanding of biological computation under the information thermodynamics framework. The project is related to another grant from The Royal Society for the Theo Murphy Discussion Meeting: ‘Toward a Computational Theory of Life’ (2018).

Our experts: Professor Mikhail Prokopenko, Associate Professor Joseph Lizier, Mr Emanuele Crosato

Our partners: Mr Guy Theraulaz (Université Paul Sabatier, Toulouse, France), Ms Rosalind X. Wang (CSIRO)

We develop and apply a rigorous information-theoretic framework for detecting and measuring predictive information flows during collective motion within a school of fish. We also explore the role of spatial dynamics in generating the influential interactions that carry the information flows. 

Our people

  • Dr Quang Dang Nguyen
  • Dr Sheryl Chang