University of Sydney Handbooks - 2018 Archive

Download full 2018 archive Page archived at: Fri, 21 Sep 2018 05:39:44 +0000

Food Science Descriptions

Errata
Item Errata Date
1. BCMB2001 Biochemistry and Molecular Biology: Prerequisites have changed. They now read:
P: 6cp of (BIOL1XX7 or MBLG1XXX) and 6cp of (CHEM1XX1 or CHEM1903)
8/3/2018
2. BCMB2901 Biochemistry and Molecular Biology (Advanced) Prerequisites have changed. They now read: P A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) and (CHEM1XX1 or CHEM1903) 8/3/2018

FOOD SCIENCE

Advanced coursework and projects will be available in 2020 for students who complete this major.

Food Science major

A major in Food Science requires 48 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 6 credit points of 2000-level food science units
(iii) 6 credit points of 2000-level biochemistry units
(iv) 24 credit points of 3000-level core units

Food Science minor

A minor in Food Science requires 36 credit points from this table including:
(i) 12 credit points of 1000-level core units
(ii) 6 credit points of 2000-level food science units
(iii) 6 credit points of 2000-level biochemistry units
(iv) 12 credit points of 3000-level core units

Units of study

The units of study are listed below.

1000-level units of study

Core
BIOL1007 From Molecules to Ecosystems

Credit points: 6 Teacher/Coordinator: Dr Emma Thompson Session: Semester 2,Summer Main Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1907 or BIOL1997 Assumed knowledge: HSC Biology. Students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (offered in February). Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative final exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . You will participate in inquiry-led practicals that reinforce the concepts in the unit. By doing this unit you will develop knowledge and skills that will enable you to play a role in finding global solutions that will impact our lives.
Textbooks
Please see unit outline on LMS
BIOL1907 From Molecules to Ecosystems (Advanced)

Credit points: 6 Teacher/Coordinator: Prof Pauline Ross Session: Semester 2 Classes: Two lectures per week and online material and 12 x 3-hour practicals Prohibitions: BIOL1007 or BIOL1997 Assumed knowledge: 85 or above in HSC Biology or equivalent Assessment: Quizzes (10%), communication assessment (40%), skills tests (10%), summative exam (40%) Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and discover how expanding tools have improved our capacity to manage and intervene in ecosystems for our own health and organisms in the environment that surround and support us . This unit of study has the same overall structure as BIOL1007 but material is discussed in greater detail and at a more advanced level. The content and nature of these components may vary from year to year.
Textbooks
Please see unit outline on LMS
BIOL1997 From Molecules to Ecosystems (SSP)

Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 2 Classes: Two lectures per week and online material Prohibitions: BIOL1007 or BIOL1907 Assumed knowledge: 90 or above in HSC Biology or equivalent Assessment: One 2-hour exam (50%), project report which includes written report and presentation (50%) Practical field work: As advised and required by the project; approximately 30-36 hours of research project in the laboratory or field Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Paradigm shifts in biology have changed the emphasis from single biomolecule studies to complex systems of biomolecules, cells and their interrelationships in ecosystems of life. Such an integrated understanding of cells, biomolecules and ecosystems is key to innovations in biology. Life relies on organisation, communication, responsiveness and regulation at every level. Understanding biological mechanisms, improving human health and addressing the impact of human activity are the great challenges of the 21st century. This unit will investigate life at levels ranging from cells, and biomolecule ecosystems, through to complex natural and human ecosystems. You will explore the importance of homeostasis in health and the triggers that lead to disease and death. You will learn the methods of cellular, biomolecular, microbial and ecological investigation that allow us to understand life and intervene in ecosystems to improve health. The same theory will be covered as in the advanced stream but in this Special Studies Unit, the practical component is a research project. The research will be either a synthetic biology project investigating genetically engineered organisms or organismal/ecosystems biology. Students will have the opportunity to develop higher level generic skills in computing, communication, critical analysis, problem solving, data analysis and experimental design.
Textbooks
Please see unit outline on LMS
CHEM1111 Chemistry 1A

Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1,Semester 2,Summer Main Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1911 or CHEM1991 Assumed knowledge: Students who have not completed HSC Chemistry (or equivalent) and HSC Mathematics (or equivalent) are strongly advised to take the Chemistry and Mathematics Bridging Courses (offered in February) Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed secondary school chemistry are strongly advised to instead complete Fundamentals of Chemistry 1A in the first semester of the calendar year (unless you require 12 credit points of Chemistry and are commencing in semester 2). You should also take the Chemistry Bridging Course in advance (offered in February, and online year-round http://sydney.edu.au/science/chemistry/studying-chemistry/bridging-course.shtml).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions like how do dyes work, how do we desalinate water, how do we measure the acid content in foods, how do we get the blue in a blueprint, and how do we extract natural products from plants? Through inquiry, observation and measurement, you will understand the 'why' and the 'how' of the natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a satisfactory prior knowledge of the HSC chemistry course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1011 Fundamentals of Chemistry 1A

Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1111 or CHEM1911 or CHEM1991 Assumed knowledge: There is no assumed knowledge of chemistry for this unit of study but students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February). Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Students who have not completed HSC Chemistry (or equivalent) are strongly advised to take the Chemistry Bridging Course (offered in February, and online year-round, see http://sydney.edu.au/science/chemistry/studying-chemistry/bridging-course.shtml).
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will equip you with the fundamental knowledge and skills in chemistry for broad application. You will learn about atomic theory, structure and bonding, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students whose chemical background is weak (or non-existent). Compared to the mainstream Chemistry 1A, the theory component of this unit begins with more fundamental concepts, and does not cover, or goes into less detail about some topics. Progression to intermediate chemistry from this unit and Fundamentals of Chemistry 1B requires completion of an online supplementary course.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1911 Chemistry 1A (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures and 1x1-hr tutorial per week; 1x3-hr practical per week for 9 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1991 Assumed knowledge: 80 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, laboratory log book, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for broad application, including further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups of molecules. You will develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions about the chemical nature and processes occurring around you. Through inquiry, observation and measurement, you will better understand natural and physical world and will be able to apply this understanding to real-world problems and solutions. This unit of study is directed toward students with a good secondary performance both overall and in chemistry or science. Students in this category are expected to do this unit rather than Chemistry 1A. Compared to the mainstream Chemistry 1A, the theory component of this unit provides a higher level of academic rigour and makes broader connections between topics.
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)
CHEM1991 Chemistry 1A (Special Studies Program)

Credit points: 6 Teacher/Coordinator: Dr Toby Hudson Session: Semester 1 Classes: 3x1-hr lectures; 1x1-hr tutorial per week; 1x3hr practical per week for 12 weeks Prohibitions: CHEM1001 or CHEM1101 or CHEM1901 or CHEM1903 or CHEM1109 or CHEM1011 or CHEM1111 or CHEM1911 Assumed knowledge: 90 or above in HSC Chemistry or equivalent Assessment: quizzes, attendance, presentations, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Note: Department permission required for enrolment
Chemistry describes how and why things happen from a molecular perspective. Chemistry underpins all aspects of the natural and physical world, and provides the basis for new technologies and advances in the life, medical and physical sciences, engineering, and industrial processes. This unit of study will further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, and further study in chemistry. You will learn about nuclear and radiation chemistry, wave theory, atomic orbitals, spectroscopy, bonding, enthalpy and entropy, equilibrium, processes occurring in solutions, and the functional groups in carbon chemistry. You will develop experimental design, conduct and analysis skills in chemistry in small group projects. The laboratory program is designed to extend students who already have chemistry laboratory experience, and particularly caters for students who already show a passion and enthusiasm for research chemistry, as well as aptitude as demonstrated by high school chemistry results. Entry to Chemistry 1A (Special Studies Program) is restricted to a small number of students with an excellent school record in Chemistry, and applications must be made to the School of Chemistry. The practical work syllabus for Chemistry 1A (Special Studies Program) is very different from that for Chemistry 1A and Chemistry 1A (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1A (Advanced).
Textbooks
Recommended textbook: Blackman, Bottle, Schmid, Mocerino and Wille,Chemistry, 3rd Edition, 2015 (John Wiley) ISBN: 978-0-7303-1105-8 (paperback) or 978-0-7303-2492-8 (e-text)

2000-level units of study

Food science units
AGEN2002 Fresh Produce Management

Credit points: 6 Teacher/Coordinator: Dr Rosalind Deaker Session: Semester 1 Classes: Two 1-hour lectures per week Prerequisites: 6cp from (BIOL1XXX or AGEN1004 or MBLG1XX1) Assumed knowledge: HSC level Mathematics and Biology and CHEM1XX1 or CHEM1XX2 or CHEM1903 or CHEM1904 Assessment: Three practical reports (15% each), one group presentation (15%), one end of semester exam (40%) Practical field work: Two field trips, six practical sessions per semester Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study covers some fundamental concepts in food science with a particular emphasis on post-harvest management of fresh produce. Students will critically examine the science underpinning management and handling of fresh food products. The unit primarily addresses the challenges of maintaining quality, extending shelf life and improving safety of fresh perishable produce by examining relevant industrial practices and technologies.. Students will develop practical skills and integrate knowledge of physiology, technology and economics of fresh produce management to determine optimal storage and handling conditions for maximum quality, shelf life, safety and ultimately consumer experience. The majority of examples will be drawn from fruits and vegetables, dairy, eggs, meat and seafood products. Industry quality assurance schemes and government regulations will be examined, with particular reference to food safety. The students will gain research, inquiry and communication skills through a research-based group project, an oral presentation and laboratory reports. Personal and intellectual autonomy will be developed through group and individual work.
Textbooks
No prescribed textbooks
Biochemistry units
BCMB2001 Biochemistry and Molecular Biology

Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 1 Classes: Three lectures/tutorials per week ; one 4-hour practical session per fortnight Prerequisites: 6cp of (BIOL1XX7 or MBLG1XXX) and 6cp of CHEM1XX1 Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2901 Assessment: Assignments, skills-based assessment, quizzes, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? And, what happens as a result of disease or genetic mutation? In this unit of study you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. Then we will explore how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. Our practicals, along with other guided and online learning sessions will introduce you to widely applied and cutting edge tools that are essential for modern biochemistry and molecular biology. By the end of this unit you will be equipped with foundational skills and knowledge to support your studies in the life and medical sciences.
Textbooks
Lehninger Principles of Biochemistry 7th edition (2016) David L. Nelson Michael M. Cox Macmillan (ISBN-10: 1-4641-2611-9; ISBN-13: 978-1-4641-2611-6)
BCMB2901 Biochemistry and Molecular Biology (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 1 Classes: Three 1-hour lectures/tutorials per week; one 4-hour practical per fortnight Prerequisites: A mark of at least 70 from (BIOL1XX7 or MBLG1XX1) and CHEM1XX1 Prohibitions: BCHM2072 or BCHM2972 or MBLG2071 or MBLG2971 or BMED2405 or BCMB2001 Assessment: Assignments, quiz, skills-based assessment, exam Mode of delivery: Normal (lecture/lab/tutorial) day
Without cells, life as we know it would not exist. These dynamic assemblies, packed with biological molecules are constantly in action. But how do cells work? Why is the food that you eat so important for cellular function? How is information transmitted from generation to generation? And, what happens as a result of disease or genetic mutation? In this unit of study you will learn how cells work at the molecular level, with an emphasis on human biochemistry and molecular biology. We will focus initially on cellular metabolism and how cells extract and store energy from fuels like fats and carbohydrates, how the use of fuels is modulated in response to exercise, starvation and disease, and how other key metabolites are processed. Then we will explore how genetic information is regulated in eukaryotes, including replication, transcription and translation, and molecular aspects of the cell cycle, mitosis and meiosis. The advanced laboratory component will provide students with an authentic research laboratory experience while in the theory component, current research topics will be presented in a problem-based format through dedicated advanced tutorial sessions. This material will be assessed by creative student-centered activities supported by eLearning platforms.
Textbooks
Lehninger Principles of Biochemistry 7th edition (2016) David L. Nelson Michael M. Cox Macmillan (ISBN-10: 1-4641-2611-9; ISBN-13: 978-1-4641-2611-6)
MEDS2003 to be developed for offering in 2019 (MEDS coded units of study are only available to students in the Medical Science stream.).

3000-level units of study

Major core
AGEN3004 Food Processing and Value Adding

Credit points: 6 Teacher/Coordinator: Dr Kim-Yen Phan-Thien Session: Semester 1 Classes: Two 1-hour lectures per week Prerequisites: 6cp from (CHEM1XXX or AGEN1004 or AGEN1006) and 6cp from (BIOL1XXX or MBLG1XXX) Assessment: Two individual assignments (10% + 20% ), one group processing report (20%), one group oral presentations (10%), one 2-hour final exam (40%) Practical field work: One 3-hour practical or excursion per week Mode of delivery: Normal (lecture/lab/tutorial) day
From the grinding of grains to the drying of meats, humans have been processing their food since the dawn of civilisation. Over the decades, many traditional processing methods have become industrialised, while new processing technologies have emerged, quietly revolutionising our food systems, diets and cultures. In this unit of study, students examine the biochemical and physicochemical transformations that occur in food materials during processing and how processing parameters affect the fulfilment of food quality, shelf-life, and safety objectives. The unit is roughly organised into modules on (1) processing to modify food structure; (2) processing for preservation; and value-adding, focused on (3) healthier food and (4) fermentation as interesting case studies in food processing.The unit will include lectures, laboratory sessions, group work and visits to food processing facilities.
Textbooks
No prescribed textbooks
AGCH3025 Chemistry and Biochemistry of Foods

Credit points: 6 Teacher/Coordinator: Dr Thomas Roberts (Coordinator), Prof Les Copeland Session: Semester 1 Classes: Two 1-hour lectures per week, one 4-hour practical fortnightly Prohibitions: AFNR5102 or AGCH3017 or AGCH3024 Assumed knowledge: 6cp from (BCHM2XXX or BCMB2XXX or CHEM2XXX or AVBS2005) Assessment: One 2-hour exam (40%) and six lab reports (6x10%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study aims to give students an understanding of the properties of food constituents, and the interactions between these constituents during food processing, storage and digestion. The unit will develop an understanding of the relationship between form and functionality of constituents and the concept of fitness-for-purpose (i.e., quality) in converting agricultural products into foods. Students will gain an appreciation of the relationship between chemical composition and properties of macroconstituents (carbohydrates, proteins, lipids) and microconstituents (vitamins, minerals, antioxidants, flavour and anti-nutritional chemicals) and their functions in plant- and animal-based foods. The material presented in lectures and practical classes will enable students to develop research and inquiry skills and an analytical approach in understanding the biochemistry of foods, food processing and storage. On completing this unit, students will be able to describe the chemical and biochemical properties of major food constituents, and demonstrate an understanding of the functionality of these constituents in food processing and nutrition. Students will have gained experience in laboratory techniques used in industry for the analysis of some food products, and information literacy and communication skills from the preparation of practical reports.
Textbooks
Lecture and laboratory notes will be made available through Blackboard. There is no recommended textbook.
AGEN3001 Food Product Development

Credit points: 6 Teacher/Coordinator: Dr Kim-Yen Phan-Thien Session: Intensive August Classes: Intensive Unit - twelve 4-hour workshops over four weeks Prerequisites: 6cp from AGEN3004 Assumed knowledge: 6cp from (BIOL1XXX, MBLG1XXX) and 6cp from CHEM1XXX Assessment: One individual assignment (20%), one group project report (60%), one group presentation (20%) Practical field work: Six practical sessions Mode of delivery: Normal (lecture/lab/tutorial) day
In this unit of study, students will gain a theoretical and practical understanding of the development of novel food products using traditional and novel food ingredients. Students will examine processes in market trend analysis, product innovation, prototype development, product testing and the formal presentation of a new product. They will develop practical skills in product research and development through a group design project that will require application of product development principles and integration of knowledge regarding product specifications, ingredient interactions and food processing. Product quality, functionality, shelf-life, safety, nutritional and health implications are key considerations in the design process. This is an intensive unit taught as a series of workshops over the first four weeks of semester. It is designed to be taken as one of the final core units in the food science major of the BFoodAgrib as it integrates learnings from across the program and offers a great platform for exploration of product development ideas, that could potentially be expanded in 4th year research projects.
Textbooks
No prescribed textbooks
AGEN3XXX to be developed for offering in 2019.
Minor core
AGEN3004 Food Processing and Value Adding

Credit points: 6 Teacher/Coordinator: Dr Kim-Yen Phan-Thien Session: Semester 1 Classes: Two 1-hour lectures per week Prerequisites: 6cp from (CHEM1XXX or AGEN1004 or AGEN1006) and 6cp from (BIOL1XXX or MBLG1XXX) Assessment: Two individual assignments (10% + 20% ), one group processing report (20%), one group oral presentations (10%), one 2-hour final exam (40%) Practical field work: One 3-hour practical or excursion per week Mode of delivery: Normal (lecture/lab/tutorial) day
From the grinding of grains to the drying of meats, humans have been processing their food since the dawn of civilisation. Over the decades, many traditional processing methods have become industrialised, while new processing technologies have emerged, quietly revolutionising our food systems, diets and cultures. In this unit of study, students examine the biochemical and physicochemical transformations that occur in food materials during processing and how processing parameters affect the fulfilment of food quality, shelf-life, and safety objectives. The unit is roughly organised into modules on (1) processing to modify food structure; (2) processing for preservation; and value-adding, focused on (3) healthier food and (4) fermentation as interesting case studies in food processing.The unit will include lectures, laboratory sessions, group work and visits to food processing facilities.
Textbooks
No prescribed textbooks
AGCH3025 Chemistry and Biochemistry of Foods

Credit points: 6 Teacher/Coordinator: Dr Thomas Roberts (Coordinator), Prof Les Copeland Session: Semester 1 Classes: Two 1-hour lectures per week, one 4-hour practical fortnightly Prohibitions: AFNR5102 or AGCH3017 or AGCH3024 Assumed knowledge: 6cp from (BCHM2XXX or BCMB2XXX or CHEM2XXX or AVBS2005) Assessment: One 2-hour exam (40%) and six lab reports (6x10%) Mode of delivery: Normal (lecture/lab/tutorial) day
This unit of study aims to give students an understanding of the properties of food constituents, and the interactions between these constituents during food processing, storage and digestion. The unit will develop an understanding of the relationship between form and functionality of constituents and the concept of fitness-for-purpose (i.e., quality) in converting agricultural products into foods. Students will gain an appreciation of the relationship between chemical composition and properties of macroconstituents (carbohydrates, proteins, lipids) and microconstituents (vitamins, minerals, antioxidants, flavour and anti-nutritional chemicals) and their functions in plant- and animal-based foods. The material presented in lectures and practical classes will enable students to develop research and inquiry skills and an analytical approach in understanding the biochemistry of foods, food processing and storage. On completing this unit, students will be able to describe the chemical and biochemical properties of major food constituents, and demonstrate an understanding of the functionality of these constituents in food processing and nutrition. Students will have gained experience in laboratory techniques used in industry for the analysis of some food products, and information literacy and communication skills from the preparation of practical reports.
Textbooks
Lecture and laboratory notes will be made available through Blackboard. There is no recommended textbook.