Skip to main content

We are aiming for an incremental return to campus in accordance with guidelines provided by NSW Health and the Australian Government. Until this time, learning activities and assessments will be planned and scheduled for online delivery where possible, and unit-specific details about face-to-face teaching will be provided on Canvas as the opportunities for face-to-face learning become clear.

We are currently working to resolve an issue where some unit outline links are unavailable. If the link to your unit outline does not appear below, please use the link in your Canvas site. If no link is available on your Canvas site, please contact your unit coordinator.

Unit of study_

AMME1802: Engineering Mechanics

The unit aims to provide students with an understanding of and competence in solving statics and introductory dynamics problems in engineering. Tutorial sessions will help students to improve their group work and problem solving skills, and gain competency in extracting a simplified version of a problem from a complex situation. Emphasis is placed on the ability to work in 3D as well as 2D, including the 2D and 3D visualisation of structures and structural components, and the vectorial 2D and 3D representations of spatial points, forces and moments. Introduction to kinematics and dynamics topics includes position, velocity and acceleration of a point; relative motion, force and acceleration, momentum, collisions and energy methods.

Code AMME1802
Academic unit Aerospace, Mechanical and Mechatronic
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
CIVL1802 or ENGG1802

At the completion of this unit, you should be able to:

  • LO1. Apply a logical approach for solving a complex engineering problem
  • LO2. Express forces and moments as vectors
  • LO3. Calculate the resultant force and moment for 2D and 3D systems
  • LO4. Draw a correct free body diagram for any engineering entity
  • LO5. Calculate the value of unknown forces and moments acting on any three dimensional object from the equilibrium equations
  • LO6. Calculate the force in an internal member of a simple structure
  • LO7. Calculate the forces acting as a result of two objects in contact
  • LO8. Find the centre of mass or centroid of an object
  • LO9. Calculate reaction forces under the action of distributed forces for different structures
  • LO10. Calculate the trajectory for a particle in space
  • LO11. Determine the forces acting on an object undergoing acceleration
  • LO12. Use momentum principles to determine the forces and motion of objects undergoing collisions
  • LO13. Use energy methods to determine the kinematics of a particle under conservative forces
  • LO14. Determine the friction force in dry contacts
  • LO15. Understand how friction force develops between flexible belts and ropes in contact with other surfaces

Unit outlines

Unit outlines will be available 2 weeks before the first day of teaching for 1000-level and 5000-level units, or one week before the first day of teaching for all other units.

There are no unit outlines available online for previous years.