Skip to main content
Unit of study_

CHEM1112: Chemistry 1B

Semester 2, 2021 [Normal day] - Remote

Chemistry transforms the way we live. It provides the basis for understanding biological, geological and atmospheric processes, how medicines work, the properties of materials and substances, how beer is brewed, and for obtaining forensic evidence. This unit of study builds upon your prior knowledge of chemistry to further develop your knowledge and skills in chemistry for application to life and medical sciences, engineering, industrial processing, and further study in chemistry. You will learn about organic chemistry reactions, structural determination, nitrogen chemistry, industrial processes, kinetics, electrochemistry, thermochemistry, phase behaviours, solubility equilibrium and chemistry of metals. You will further develop experimental design, conduct and analysis skills in chemistry through experiments that ask and answer questions like how do we develop lotions that don't burn us, how do we measure UV absorption by sunscreens, how can we measure and alter soil pH, how are sticky things made, and how do we determine the concentration of vitamin C in juice? Through enquiry, observation and measurement, you will understand the 'why' and the 'how' of the natural and physical world and will be able to apply this understanding to real-world problems and solutions. Chemistry 1B is built on a satisfactory prior knowledge of Chemistry 1A.

Unit details and rules

Unit code CHEM1112
Academic unit Chemistry Academic Operations
Credit points 6
Prohibitions
? 
CHEM1002 or CHEM1102 or CHEM1902 or CHEM1904 or CHEM1108 or CHEM1012 or CHEM1912 or CHEM1992
Prerequisites
? 
CHEM1111 or CHEM1911 or CHEM1991 or CHEM1101 or CHEM1901 or CHEM1903 or (75 or above in CHEM1011 or CHEM1001)
Corequisites
? 
None
Assumed knowledge
? 

None

Available to study abroad and exchange students

Yes

Teaching staff

Coordinator Stephen George-Williams, stephen.george-williams@sydney.edu.au
Type Description Weight Due Length
Final exam (Record+) Type B final exam Final online examination
Online exam
45% Formal exam period 2 hours
Outcomes assessed: LO1 LO2 LO8 LO4 LO5 LO7
Online task Pre-laboratory quizzes
Open book online Canvas quizzes covering laboratory theory and safety
4.5% Multiple weeks 15-30 minutes
Outcomes assessed: LO1 LO8 LO5 LO4
Small continuous assessment Laboratory Log Book
a record of observations
3% Multiple weeks 1-2 pages
Outcomes assessed: LO5 LO7 LO6
Skills-based evaluation In-laboratory assessment
3x competency (3x alternative assessments for RE)
4.5% Multiple weeks Varied
Outcomes assessed: LO3 LO6
Online task Checkpoint quiz 1
Timed online open book Canvas quiz
5% Week 04 25 minutes
Outcomes assessed: LO7 LO2 LO1
Assignment Spectroscopy problem solving assignment
Canvas assignment
10% Week 05 2 weeks
Outcomes assessed: LO1 LO8 LO7 LO6 LO4
Online task Checkpoint quiz 2
Timed online open book Canvas quiz
5% Week 08 25 minutes
Outcomes assessed: LO1 LO7 LO2
Assignment Mid-semester post-laboratory assessment
A laboratory report
4% Week 08 Varied
Outcomes assessed: LO1 LO8 LO7 LO5 LO4 LO2
Online task Checkpoint quiz 3
Timed online open book Canvas quiz
5% Week 12 25 minutes
Outcomes assessed: LO1 LO7 LO2
Assignment End of semester post-laboratory assessment
A research poster
4% Week 13 Varied
Outcomes assessed: LO1 LO8 LO7 LO5 LO4 LO2
Small continuous assessment Lecture quizzes
multiple choice quizzes on Canvas based on the lecture and tutorial content
10% Weekly ~30 minutes each week
Outcomes assessed: LO1 LO7 LO2
Type B final exam = Type B final exam ?

Assessment summary

  • Lecture quizzes: Weekly online quizzes covering the topics in the lecture course. These quizzes are designed to help you develop your understanding of key topics and to give you continuous feedback. Each quiz is available for 2 weeks and you will gain maximum benefit by completing each before the first lecture of the week. You can have as many attempts at each quiz as you like within the period it is available. Your highest mark will be recorded. The first assessed quiz is on the Monday of week 3. Your top ten quizzes will be counted towards your final grade.
  • Checkpoint quizzes: The quiz involves 10 multiple choice questions and will be held during the assigned week as an online open book Canvas quiz. A sample quiz will be made available during the previous week and this should be consulted for the topics and style of the questions in the quiz. 
  • Spectroscopy Problem Solving Assignment: An online research task based on workshops in the tutorials involving structure determination of organic molecules from IR, UV and NMR spectroscopy. The structure determination section is only assessed through this assignment: it is not re-assessed in the tutorial quizzes or examination.
  • Examination: The final examination covers the whole of the lecture course and is made up of short answer questions. No laboratory work is examinable. 
  • Pre-Laboratory Quizzes: Available under the Laboratory Program Canvas site. Note that these quizzes must be completed before you arrive to complete a given experiment.
  • Laboratory Log Book: The logbook is a record of observations and hypotheses. Your highest six logbooks will be counted towards your final grade.
  • In-laboratory assessment: Key laboratory skills completed and assessed during the laboratory sessions. Consideration should also be given to safety, cleanliness, and timeliness.
  • Post-laboratory assessment: One research poster and scientific laboratory report due in weeks 8 and 13.

Detailed information for each assessment can be found on Canvas.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

At HD level, a student demonstrates a flair for the subject as well as a detailed and comprehensive understanding of the unit material. A ‘High Distinction’ reflects exceptional achievement and is awarded to a student who demonstrates the ability to apply their subject knowledge and understanding to produce original solutions for novel or highly complex problems and/or comprehensive critical discussions of theoretical concepts.

Distinction

75 - 84

At DI level, a student demonstrates an aptitude for the subject and a well-developed understanding of the unit material. A ‘Distinction’ reflects excellent achievement and is awarded to a student who demonstrates an ability to apply their subject knowledge and understanding of the subject to produce good solutions for challenging problems and/or a reasonably well-developed critical analysis of theoretical concepts.

Credit

65 - 74

At CR level, a student demonstrates a good command and knowledge of the unit material. A ‘Credit’ reflects solid achievement and is awarded to a student who has a broad general understanding of the unit material and can solve routine problems and/or identify and superficially discuss theoretical concepts.

Pass

50 - 64

At PS level, a student demonstrates proficiency in the unit material. A ‘Pass’ reflects satisfactoryachievement and is awarded to a student who has threshold knowledge.

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see sydney.edu.au/students/guide-to-grades.

For more information see guide to grades.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

This unit has an exception to the standard University policy or supplementary information has been provided by the unit coordinator. This information is displayed below:

online quizzes cannot be submitted late

Academic integrity

The Current Student website  provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.  

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

You may only use artificial intelligence and writing assistance tools in assessment tasks if you are permitted to by your unit coordinator, and if you do use them, you must also acknowledge this in your work, either in a footnote or an acknowledgement section.

Studiosity is permitted for postgraduate units unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission.

Simple extensions

If you encounter a problem submitting your work on time, you may be able to apply for an extension of five calendar days through a simple extension.  The application process will be different depending on the type of assessment and extensions cannot be granted for some assessment types like exams.

Special consideration

If exceptional circumstances mean you can’t complete an assessment, you need consideration for a longer period of time, or if you have essential commitments which impact your performance in an assessment, you may be eligible for special consideration or special arrangements.

Special consideration applications will not be affected by a simple extension application.

Using AI responsibly

Co-created with students, AI in Education includes lots of helpful examples of how students use generative AI tools to support their learning. It explains how generative AI works, the different tools available and how to use them responsibly and productively.

WK Topic Learning activity Learning outcomes
Multiple weeks Laboratory weeks 3-12, Blended online and on-campus program, see the lab canvas page for details Science laboratory (27 hr) LO1 LO3 LO4 LO5 LO6 LO7 LO8
Week 01 Introduction to organic chemistry and arrow mechanisms Lecture and tutorial (4 hr)  
Week 02 Substitution and elimination reactions Lecture and tutorial (4 hr)  
Week 03 Spectroscopy Lecture and tutorial (4 hr)  
Week 04 Alcohols, amines and carbonyl compounds Lecture and tutorial (4 hr)  
Week 05 Nitrogen chemistry Lecture and tutorial (4 hr)  
Week 06 Industrial chemistry and kinetics Lecture and tutorial (4 hr)  
Week 07 Kinetics and introduction to electrochemistry Lecture and tutorial (4 hr)  
Week 08 Electrochemistry Lecture and tutorial (4 hr)  
Week 09 Gases and liquids Lecture and tutorial (4 hr)  
Week 10 Phases transitions Lecture and tutorial (4 hr)  
Week 11 Crystal structures and solubility equilibria Lecture and tutorial (4 hr)  
Week 12 Coordination chemistry Lecture and tutorial (4 hr)  
Week 13 Wrap-up and revision Lecture and tutorial (4 hr)  

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University's graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. demonstrate an understanding of the concepts, language and symbolism of organic and inorganic chemistry
  • LO2. understand the organic and inorganic transformations, how they relate to structure and how they can be manipulated in nature and nanotechnology
  • LO3. perform safe laboratory manipulations and to handle glassware
  • LO4. find and analyse information and judge its reliability and significance
  • LO5. communicate scientific information appropriately both orally and through written work
  • LO6. engage in team and group work for scientific investigations and for the process of learning
  • LO7. demonstrate a sense of responsibility and independence as a learner and as a scientist
  • LO8. demonstrate basic skills in computing, numeracy and data handling.

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9

This section outlines changes made to this unit following staff and student reviews.

Altered lab program and altered weekly quizzes.

Work, health and safety

We are governed by the Work Health and Safety Act 2011, Work Health and Safety Regulation 2011 and Codes of Practice. Penalties for non-compliance have increased. Everyone has a responsibility for health and safety at work. The University’s Work Health and Safety policy explains the responsibilities and expectations of workers and others, and the procedures for managing WHS risks associated with University activities.

General Laboratory Safety Rules

  • No eating or drinking is allowed in any laboratory under any circumstances 
  • A laboratory coat and closed-toe shoes are mandatory 
  • Follow safety instructions in your manual and posted in laboratories 
  • In case of fire, follow instructions posted outside the laboratory door 
  • First aid kits, eye wash and fire extinguishers are located in or immediately outside each laboratory 
  • As a precautionary measure, it is recommended that you have a current tetanus immunisation. This can be obtained from University Health Service.

Disclaimer

The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.