Unit outline_

CHNG9402: Chemical Engineering Design A

Semester 1, 2026 [Normal day] - Camperdown/Darlington, Sydney

In the overall design process, chemical engineers must clearly understand the (often complex) interactions and trade-offs that occur between technical, economic, social and environmental considerations. The capstone design projects are spread over two units of study (Chemical Engineering Design A and B) run in first and second semester. These units of study build on concepts in each of these areas introduced in previous years but with an emphasis on their successful integration within a comprehensive design activity. The primary aim of the first unit of study (Chemical Engineering Design A) is to consider the challenge of process selection and feasibility including both technical and broader issues- with an emphasis on creating and evaluating a range of alternative options that exist at both the unit operation and complete flowsheet levels. The primary emphasis in the subsequent unit of study (Chemical Engineering Design B) is on process design and including how non-technical considerations affect the final process design and its operation. By the end of both units of study a student should be able to develop a wide range of alternative conceptual designs for a given product specification and market analysis, have an appreciation of how to evaluate process alternatives at the conceptual level with a view to creating a 'short-list' worthy of more detailed technical investigation, be familiar with the use of process flowsheeting software to compare alternative designs , appreciate the fact that technical considerations are only one component in an overall successful design project and be able to clearly present the results from both individual and group work in oral/written formats. This unit of study is part of an integrated (two semester) three year postgraduate program in chemical engineering design whose overarching aim is to complete the 'vertical integration' of knowledge- one of the pillars on which this degree program is based. In addition to the above fundamentals, there will be considerable time spent during the semester on advanced topics related to designing chemical processes and associated technological developments.

Unit details and rules

Academic unit Chemical and Biomolecular Engineering
Credit points 6
Prerequisites
? 
CHNG9301 and CHNG9306
Corequisites
? 
None
Prohibitions
? 
CHNG5112 or CHNG5205
Assumed knowledge
? 

Enrolment in this unit of study assumes that all core 9xxx chemical engineering UoS have been successfully completed

Available to study abroad and exchange students

No

Teaching staff

Coordinator John Kavanagh, john.kavanagh@sydney.edu.au
The census date for this unit availability is 31 March 2026
Type Description Weight Due Length Use of AI
In-person written or creative task Design Review
Hard Copy Quiz
15% Week 05
Due date: 26 Mar 2026 at 12:00

Closing date: 26 Mar 2025
1 hour AI prohibited
Outcomes assessed: LO2 LO3 LO4 LO5 LO6 LO7 LO10 LO9
Experimental design group assignment Report
Design Report
85% Week 13
Due date: 30 May 2025 at 16:00
n/a AI allowed
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO10 LO9
group assignment = group assignment ?

Assessment summary

  • Report: Students will undertake the design of a coffee processing plant. The assessment will be based on the groups engineering drawings, calculations and written report. Students will work in groups of three, and each group will be required to make intermediate submissions, as listed in the detailed instruction pack available on Canvas. Students will then be required to submit a final report which should incorporate the feedback provided with each preliminary submission. Each group will provide information on individual contributions to each section and students will also peer review the contribution of their team members in a confidential report. Students should therefore be aware that the same mark will not necessarily be given to all members of a group and marking will be based on the quality and quantity of work contributed by each team member.
  •  
  • Design Review: Students will be required to demonstrate what they have learnt about the design process in general, together with technical aspects relevant to the coffee processing plant. Student’s general uptake of theory, knowledge and synthesis acquired from the coffee processing plant assignment will be assessed.

Detailed information for each assessment can be found on Canvas.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range

Description

High distinction

85 - 100

Excellent overall process design and demonstrated individual understanding

Distinction

75 - 84

Very Good overall process design and demonstrated individual understanding

Credit

65 - 74

Good overall process design and demonstrated individual understanding

Pass

50 - 64

Reasonable overall process design and demonstrated individual understanding

Fail

0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see guide to grades.

Use of generative artificial intelligence (AI)

You can use generative AI tools for open assessments. Restrictions on AI use apply to secure, supervised assessments used to confirm if students have met specific learning outcomes.

Refer to the assessment table above to see if AI is allowed, for assessments in this unit and check Canvas for full instructions on assessment tasks and AI use.

If you use AI, you must always acknowledge it. Misusing AI may lead to a breach of the Academic Integrity Policy.

Visit the Current Students website for more information on AI in assessments, including details on how to acknowledge its use.

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

Academic integrity

The University expects students to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.

Our website provides information on academic integrity and the resources available to all students. This includes advice on how to avoid common breaches of academic integrity. Ensure that you have completed the Academic Honesty Education Module (AHEM) which is mandatory for all commencing coursework students

Penalties for serious breaches can significantly impact your studies and your career after graduation. It is important that you speak with your unit coordinator if you need help with completing assessments.

Visit the Current Students website for more information on AI in assessments, including details on how to acknowledge its use.

Simple extensions

If you encounter a problem submitting your work on time, you may be able to apply for an extension of five calendar days through a simple extension.  The application process will be different depending on the type of assessment and extensions cannot be granted for some assessment types like exams.

Special consideration

If exceptional circumstances mean you can’t complete an assessment, you need consideration for a longer period of time, or if you have essential commitments which impact your performance in an assessment, you may be eligible for special consideration or special arrangements.

Special consideration applications will not be affected by a simple extension application.

Using AI responsibly

Co-created with students, AI in Education includes lots of helpful examples of how students use generative AI tools to support their learning. It explains how generative AI works, the different tools available and how to use them responsibly and productively.

Support for students

The Support for Students Policy reflects the University’s commitment to supporting students in their academic journey and making the University safe for students. It is important that you read and understand this policy so that you are familiar with the range of support services available to you and understand how to engage with them.

The University uses email as its primary source of communication with students who need support under the Support for Students Policy. Make sure you check your University email regularly and respond to any communications received from the University.

Learning resources and detailed information about weekly assessment and learning activities can be accessed via Canvas. It is essential that you visit your unit of study Canvas site to ensure you are up to date with all of your tasks.

If you are having difficulties completing your studies, or are feeling unsure about your progress, we are here to help. You can access the support services offered by the University at any time:

Support and Services (including health and wellbeing services, financial support and learning support)
Course planning and administration
Meet with an Academic Adviser

WK Topic Learning activity Learning outcomes
Week 01 1. Introduction to the course; 2. Market review and scoping calculations Lecture (1 hr) LO1 LO2 LO3
1. Introduction to the course; 2. Market review and scoping calculations Tutorial (3 hr) LO1 LO2 LO3 LO6
Week 02 Technology review and block diagram Lecture (1 hr) LO1 LO2 LO3 LO6
Technology review and block diagram Tutorial (3 hr) LO1 LO2 LO3 LO4 LO6
Week 03 PFD and mass and energy balance Lecture (1 hr) LO1 LO2 LO5 LO7
PFD and mass and energy balance Tutorial (3 hr) LO1 LO2 LO5 LO7
Week 04 PFD and mass balance Tutorial (4 hr) LO1 LO2 LO5 LO7
Week 06 Rapid ranking and Environmental Impact Statement Lecture (1 hr) LO8
Rapid ranking and Environmental Impact Statement Tutorial (1 hr) LO8
Week 07 Control scheme and PID Lecture (1 hr) LO1 LO2
Control scheme and PID Tutorial (3 hr) LO1 LO2
Week 08 HAZOP refresher Lecture (1 hr) LO8
HAZOP Tutorial (3 hr) LO8
Week 09 Detailed design and costing Lecture (1 hr) LO1 LO2 LO6 LO7 LO10 LO9
Detailed design and costing Tutorial (3 hr) LO1 LO2 LO6 LO7 LO10 LO9
Week 10 Detailed feasibility Lecture (1 hr) LO2 LO3 LO4 LO7
Detailed feasibility Tutorial (3 hr) LO2 LO3 LO4 LO7
Week 11 Finalize design and prepare report Lecture (1 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO10 LO9
Finalize design and prepare report Tutorial (3 hr) LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO10 LO9

Attendance and class requirements

You are expected to attend all lectures and group wrok sessions.

Poor attendance has been shown to correlate with poor peformance in the group design report and the design review.

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Required readings

All readings for this unit can be accessed through the Library eReserve, available on Canvas.

  • Peters, Timmerhaus and West, Plant Design and Economics for Chemical Engineers (Fifth). McGraw Hill, 2003. 0-07-239266-5.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University's graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. clearly present the results from both individual and group work in oral/written formats
  • LO2. work as a team to produce a process design
  • LO3. understand the relationship between process selection, environmental impact and commercial feasibility
  • LO4. appreciate the technical and financial trade-offs that exist in complex flowsheets
  • LO5. develop a wide range of alternative conceptual designs for a given product specification and market analysis
  • LO6. appreciate the fact that technical considerations are only one component in an overall successful design project
  • LO7. use process flowsheeting software to compare alternative designs - including the potential benefits of both process modification (eg by heat integration) and process optimisation and factorial cost estimation
  • LO8. understand theory of hazard assessment and hazard operability studies
  • LO9. evaluate alternatives at the conceptual level with a view to creating a ‘short-list’ worthy of more detailed technical investigation.
  • LO10. appreciate advanced topics related to designing chemical processes and associated technological developments

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9

This section outlines changes made to this unit following staff and student reviews.

Updates have been made to the lectures and interim hand-ins from suggestions from previous years. Environmental Impact Statements have been moved from Design B to level the workload.

Site visit guidelines

There may be a site visit in this class, if so we will inform you of the PPE requirements well before the visit.

Work, health and safety

There may be a site visit in this class, if so we will inform you of the PPE requirements well before the visit.

Disclaimer

Important: the University of Sydney regularly reviews units of study and reserves the right to change the units of study available annually. To stay up to date on available study options, including unit of study details and availability, refer to the relevant handbook.

To help you understand common terms that we use at the University, we offer an online glossary.