Differential equations and the notion of convergence are ubiquitous within the natural sciences, engineering and mathematics. Analysis has, thus, far reaching applications, and it is a major discipline in its own right. The origins of many major areas such as topology, functional and harmonic analysis have their roots in real and complex analysis. Analysis makes unexpected appearances in other areas such as number theory, where it played a key role in a recent breakthrough on arithmetic progression of prime numbers by Fields medalist Terrence Tao. Analysis deals with any kind of limit process, notions of distance, measure, continuity or differentiability. It makes up a crucial part of diverse areas in mathematics. The fields of application of analysis that you will encounter in this unit may include partial differential equations, differential geometry, harmonic analysis, topological groups, optimal control, scattering theory, ergodic theory, differential topology or mathematical physics. The selection of topics in this unit is guided by their relevance for applications and current research. In this unit, you will gain an understanding of the systematic, abstract foundations of a branch of analysis and develop tools needed to get to the present frontiers.
Unit details and rules
| Academic unit | Mathematics and Statistics Academic Operations |
|---|---|
| Credit points | 6 |
| Prerequisites
?
|
None |
| Corequisites
?
|
None |
|
Prohibitions
?
|
None |
| Assumed knowledge
?
|
Familiarity with metric spaces (e.g., MATH4061 or equivalent) and higher analysis (e.g., MATH4313 or MATH4315 or equivalent). Please consult with the coordinator for further information |
| Available to study abroad and exchange students | No |
Teaching staff
| Coordinator | Jiakun Liu, jiakun.liu@sydney.edu.au |
|---|