University of Sydney Handbooks - 2016 Archive

Download full 2016 archive Page archived at: Fri, 13 May 2016 14:40:28 +1000

Materials Engineering Major

Overview

This major focuses on development of an understanding of the relationship between properties of materials and their relationship to engineering design. Concepts covered include: mechanical properties; fracture and fatigue mechanics; composite materials; ceramics and glasses; structure-property relationships; and selection of materials.

This major best aligns with the Mechanical stream.

Unit of study table

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

Materials Engineering Major

Unit of study table

Complete the following units of study, totalling 24 credit points:
MECH3362
Materials 2
6    A This subject requires you to have two important skills to bring in: (1) A good understanding of basic knowledge and principles of material science and engineering from AMME2302 (MECH2300) Materials I and mechanics of solids for simple structural elements (in tension, bending, torsion) from AMME2301 (AERO2300); (2) Reasonable mathematical skills in calculation of stresses and strains in simple structural elements.
P AMME2301 AND (AMME1362 OR AMME2302 OR CIVL2110)
Semester 1
MECH5304
Materials Failure
6    A Fundamental knowledge in materials science and engineering: 1) atomic and crystal structures 2) metallurgy 3) structure-property relationship 4) mechanics of engineering materials 5) solid mechanics

Note: Department permission required for enrolment
Students will attend a series lectures on failure analyses of engineering materials addressing brittle rupture/fracture, yielding, cleavage fracture, fatigue and creep failure of engineering materials under static and dynamic loads. Students will also attend short introduction courses on optical microscopy and scanning electron microscopy (SEM) to gain some essential knowledge in diagnostic and forensic analyses of materials failure. Each student participates in a couple of group projects relevant to diagnostic analyses of failure of typical engineering materials such as steel, aluminium, magnesium alloys, engineering plastics and advanced fibre composites. Under the guidance of the supervisor, the student will learn how to initiate a proposal on failure analysis, how to do the project investigation and how to prepare and carry out technical communications (oral presentation and discussion between groups). In any of these scenarios, the student is directly responsible for the progress and quality of the results. At the end of the semester, the student is required to submit a written project report and to give a seminar presenting the aims and achievements of the project.
Semester 2
MECH5305
Smart Materials
6    A Fundamental knowledge in materials science and engineering: 1) atomic and crystal structures 2) metallurgy 3) structure-property relationship 4) mechanics of engineering materials 5) solid mechanics


The UoS covers the key knowledge of most smart materials such as dielectric, piezoelectric, magneto-electric and shape memory materials. Each student participates in a couple of group projects relevant to characterization of structure-property relationship of functional structures with desired performance. Under the guidance of the supervisor, the student will learn how to develop a proposal, how to do the project investigation and how to prepare and carry out the technical communications (writing and oral). In any of these scenarios, the student is directly responsible for the progress and quality of the results. At the end of the semester, the student is required to submit a written project report and to give a seminar presenting the aims and achievements of the project.
Semester 2
MECH5310
Advanced Engineering Materials
6    N MECH4310


Advanced polymer matrix composites, smart/functional materials, high-strength ferrous and non ferrous alloys, superalloys, high performance polymers, eco-materials, thin film science and technology, advanced joining methods, processing-structure-property relationship, damage tolerance, toughening mechanisms, structure integrity and reliability.
Semester 1