Your Search Results

Develop point-of-care microfluidic technologies for cardiovascular and cerebrovascular diseases

We are developing a clinically useful, rapid and high throughput profiling microdevices for thrombosis and coagulation. It will be extremely useful for patients with diabetes, obesi more...

Supervisor(s): Ju, Lining (Arnold) (Dr)

Develop single-cell mechanobiological methods for discovering molecular mechanisms of cardiovascular and neuronal mechanical force sensing

We are developing cutting-edge technologies for the following biomedical application: 1) define the mechanosensing functions of key protein players in the cardiovascular system such more...

Supervisor(s): Ju, Lining (Arnold) (Dr)

Develop single-molecule and super-resolution microscopy imaging technologies in the cardiovascular disease

This project will focus on development, improvement, and application of single-molecule tracking and super-resolution imaging, such as TIRF, HiLo, PALM, STORM, Lattice Light-Sheet M more...

Supervisor(s): Ju, Lining (Arnold) (Dr)

Plasma surface modification for applications in microfluidic diagnostic systems and implantable cardiovascular devices

You will develop novel hemocompatible, bioactive surfaces in microfluidic models for cardiovascular applications. The project is part of an existing collaboration between medic more...

Supervisor(s): Bilek, Marcela (Professor)

Chemical synthesis and phenotypic validation of precision proteolysis targeted chimeras (PROTACs) for cancer and cardiovascular disease

Emerging from the interface between chemistry and biology, chemical biology has led to the establishment of several game-changing drug discovery paradigms. Among these revolutionary more...

Supervisor(s): Liu, Xuyu (Dr), Payne, Richard (Professor)

Ageing Blood Vessels

Techniques: high resolution imaging, use of new imaging platforms such as ImageStream, molecular biology, tissue culture, in vitro models of disease, flow cytometry, establishment o more...

Supervisor(s): Gamble, Jennifer (Professor)

Implantable Medical Devices

The ability to attach functional proteins, antibodies and enzymes to surfaces underpins the development of the next generation of implantable medical devices, biosensors and protein more...

Supervisor(s): Bilek, Marcela (Professor)