Skip to main content
Simon Marais lecture
Event_

Dr Simon Marais Memorial Lecture

Bringing world renowned experts in mathematics and theoretical physics
Get inspired by Dr Simon Marais, one of Australia’s most-respected investors, remembered for his extraordinary intelligence, uncompromising integrity and fearless attitude.

Event Details

When: Monday 5 December 2022
Time: 5:45pm for 6pm - 7pm
Venue: Messel Lecture Theatre, Sydney Nano Institute, Physics Road, The University of Sydney
Cost: Free, registration essential
Register here

2022: The Unseen Universe - How it Impacts the World We See

Presented by Professor Marcela Carena, Professor of Physics at the University of Chicago

Most of the Universe is invisible, but still the invisibles determine our everyday existence.

There is an invisible energy field, related to the Higgs boson, that provides mass. There is dark matter that holds our galaxy together, but we have yet to detect it in the laboratory. There are virtual particles that can flicker into existence and disappear very quickly, but they affect the forces of Nature and the behavior of matter.

In this lecture Professor Marcela Carena will show exciting recent results from experiments at Fermilab in Chicago USA with particles called muons. These results may connect the effects of virtual particles to an explanation of dark matter, the existence of new forces in Nature, or to cousins of the Higgs boson that may change our understanding of the first instants of the Big Bang.

Professor Marcela Carena

About the speaker

Professor Marcela Carena is a particle physicist and head of the Theory Division at the Fermi National Accelerator Laboratory, and a Professor of Physics at the University of Chicago, where she is a member of both the Enrico Fermi Institute and the Kavli Institute for Cosmological Physics.

Her research explores the possible connections between the Higgs boson, dark matter, and the origin of matter in the early universe. She has been a leader in exploring radical new concepts such as supersymmetry and warped extra dimensions, particularly in showing how these ideas can be tested in experiments.

Prof. Carena works closely with physicists at the CERN Large Hadron Collider, in particular with those at Fermilab and UChicago, creating and implementing strategies for discovery.

Recently, she is exploring ideas at the boundary between particle physics and quantum information, to tackle problems of quantum theory and the early Universe.

Dr Simon Marais

About Dr Simon Marais

Dr Simon Marais was born in a rural town of Upington, South Africa in 1964. After obtaining a Master of Science at Stellenbosch University and a PhD in theoretical physics at Cambridge, he brought a compelling new style of ‘contrarian’ investing to the Australian funds management industry.

Working as Founder, Chief Executive and portfolio manager at fund manager Allan Gray Australia, Chairman of Allan Gray South Africa and previously as head of research at the global investment management firm Orbis Group, he built a reputation as the outstanding asset manager of his generation.

Dr Marais was compassionate, humble and passionate about conservation throughout his life. He was committed to teaching his children and would tutor his sons in maths irrespective of how demanding his professional schedule became. A constant source of inspiration to friends, colleagues and the mathematics students he tutored in his spare time, his essential optimism and leadership endures.

Established in 2016, this annual memorial lectureship commemorates Dr Simon Marais’ interest and commitment to mathematics, theoretical physics and education.

The University of Sydney was entrusted to continue his passion by his family to inspire our students to pursue mathematics and theoretical physics, strengthen the research community in these fields and engage the general public in these fields of work. The inaugural memorial lecture was held in 2017.

Past Lectures

2019: An intriguing journey in maths

Presented by Dr June Huh, Princeton University, and the Institute for Advanced Study in Princeton, USA.

Mathematicians are mapmakers. They explore the realm of the abstract beyond what's known, to record notable features and connections. The most intriguing terrain can be found along the border of its two continents: the continuous and the discrete.

Explore the fascinating interplay between the two competing models of reality from historical, mathematical, and personal perspectives in this public lecture by Dr June Huh. He will share examples from the simplest mathematical objects: equations, numbers, graphs and spaces.

Join this astounding adventure in maths, where you’ll discover the very fabric of reality.

Watch the lecture

2018: Decoding spacetime - The quantum computational universe

Presented by Professor Patrick Hayden, Stanford University – expert in physics and computer science, active in the fields of quantum information theory and quantum computing.

The amazing versatility of modern computers disguises their fundamental simplicity. In the near future, computers exploiting the strangeness of quantum mechanics will accomplish tasks that would defeat even the largest, fastest bit-based supercomputers.

Quantum computation isn’t just a technological advance, though. It could hold the key to explaining the origin of space itself. The same techniques that will be used to protect delicate quantum computer memories from corruption appear to be used by nature to stitch together the fabric of spacetime. This exciting public talk will be a tour of this remarkable confluence of the practical and the fundamental.

Watch the lecture

2017: The mathematics of deja vu

Presented by Professor Amie Wilkinson, University of Chicago

Dynamics is an exciting area of mathematics concerned with the motion of spaces ("dynamical systems") over time. It continues to have applications in a wide variety of fields such as physics, biology, chemistry, medicine and economics. Professor Wilkinson answers questions using a mathematical version of déjà vu called 'recurrence'; including how we can mix and unmix two ideal gases in a box and describing the deep properties of the prime numbers or the existence of exoplanets in nearby solar systems.

Watch the lecture