Facts & figures
Facts & figures
In this field, you can journey from molecular mechanisms to whole organism processes and ecosystem interactions, and investigate a multitude of life forms – from viruses, bacteria and protozoans to fungi, plants and animals, including humans.
Professor Jennifer Potts, Head of School
Professor Jacqueline Matthews, Deputy Head of School
Dr Carolyne Carter, School Manager
Associate Professor Tina Bell and Dr Gary Muscatello, Agriculture & Food
Associate Professor Catherine Herbert, Ecology, Evolution & Conservation
Associate Professor Andrew Holmes, Molecules, Cells & Organisms
Associate Professor Feike Dijkstra, Agriculture & Food
Associate Professor Marcus Heisler, Molecules, Cells and Organisms
Professor Nathan Lo - Ecology, Evolution & Conservation
Associate Professor Andrew Merchant, Associate Head (Research)
Associate Professor Charles Warren, Associate Head (Education)
At the School of Life and Environmental Sciences, you will have access to fantastic facilities from biochemistry and genetics laboratories, to plant breeding and ecology greenhouses, to veterinary hospitals, to field facilities in the Great Barrier Reef, dry sclerophyll forests, mangrove swamps, beaches and intertidal rock platforms, agricultural fields and livestock farms.
The School of Life and Environmental Sciences conducts teaching and research on our campus in central Sydney, as well as farms and clinics established in Camden in greater Sydney, a research station at One Tree Island on the Great Barrier Reef, Crommelin Biological Field Station on the NSW Central Coast, and the Plant Breeding Institute at Narrabri in the grain growing area of northern NSW.
The School also has access to facilities in major hospitals like Westmead, medical research institutes and veterinary clinics around Sydney and Australia.
Fragment based drug design (FBDD) is a strategy for lead discovery that is growing rapidly in popularity. Rather than rely on gargantuan libraries of hundreds of thousands of complex molecules, FBDD revolves around a small, carefully curated library of very small molecules that are about half the size of typical drugs.
A target protein is screened against the library and ‘hits’ can then be chemically expanded to create lead compounds that bind with high affinity. The approach can be used to target enzymes as well as less traditional targets such as protein-protein or protein nucleic acid interactions. FBDD is likely to be a vital resource in the search for new antimicrobial compounds.
Our FBDD facility acts as the Sydney node of the established FBDD platform at Monash University run by A/Prof Martin Scanlon. Our facility consists of a Janus liquid handling robot and a cryoprobe-equipped 600-MHz NMR spectrometer fitted with a SampleJet autosampler. This setup allows us to prepare and screen a large amount of samples.
Please contact Dr Lorna Wilkinson-White to discuss how your research could benefit from a fragment-based drug design approach.