Research programs

Our current projects and outcomes

We aim to discover groundbreaking solutions to some of the big issues facing humanity today by incorporating expertise from disciplines across the University in a range of research programs. 

Current research programs

These flagship programs focus on bringing together reseachers from across the University to solve some of the world's largest challenges that are of a social, economic and scientific significance. The four new Grand Challenge projects running from 2022 - 2023 are: 

Sydney Nano networks connects multi-disciplinary expertise and capabilities across the University, to create solutions for major societal, economic and scientific challenges.

Learn more about our current networks:


Smart Sustainable Building

The Frontier scheme is designed to assess and develop one emerging technology platform in multiple applications to identify technology transfer opportunities over a diverse range of sectors.

Breaking space-time barriers with nanosensors

Chief Investigators: Katrina Jolliffe and Yi Shen

This Frontier will address food security and healthcare by developing a molecular and nanotechnological approach that allows to visualise and measure biological & biochemical events.


Chief Investigators: Stefano Palomba and Daniele Vigolo

The NanoFluidics Frontier will identify critical applications of Nanofluidics as a result of an academic and industrial mapping, particularly in the area of NanoHealth and sensing. Nanofluidics studies the behaviour of fluids at a very small scale where fluid mechanics allows, for example, high molecular or charge selectivity. This project will identify key players and engage with academic and industry partners to build its portfolio.

The Catalyst scheme underpins Grand Challenges or encourage new ways of thinking about research. It aims to bring together researchers from Social Sciences, Design, Law and the Business School with scientist from Science, Health Sciences, Medicine and Engineering.


Chief Investigators: Lee Wallace, Julie Rrap

Arthaus is designed to strengthen and expand the ways scientists and creative practitioners approach interdisciplinary research programs together. We will test and evaluate three interconnected initiatives with different Sydney Nano communities (Quantum, Smart Sustainable Building Network, and the HDR community). Drawing on insights from the successful "Artists in the Lab" initiative, the Sydney Nano Arthaus team will ultimately pursue external funding to ensure evolving best practice in interdisciplinary engagement.

Engaged Innovation Scholarship for Impact

Chief Investigators: Steven MaguireEric Knight

This transversal program aims to bring innovation, entrepreneurship, design thinking and sustainability to each of the Grand Challenge projects. This includes integrative cross-cutting research from The University of Sydney Business School and is for anyone interested in studying the innovation and commercialisation of nanoscience technologies ‘in the making’ by offering the opportunity to be engaged in a multidisciplinary team. 


Chief Investigators: Diana ChesterBen CareyLiam BrayLuke Hespanhol

This Catalyst project will use data collected from a research initiative at Sydney Nano to develop a creative arts project using virtual reality and spacialied audio. The key objectives of the project are, 1) to bring better visibility to collaborative possibilities between Sydney Nano and the Faculty of Arts and Social Sciences; 2) to use visual and sonic data visualisation capabilities to make sense of data generated in a nano environment and to share it with an audience; and 3) to increase the impact of Sydney Nano research by making it visible to a broader audience through creative outputs.

Learn more about the Nanoresonance Catalyst project.

Nanosonic Stories

Chief Investigators: Alice MotionChiara O’Reilly, Naseem AhmadpourDaniel Yeadon

This catalyst project will research effective ways to communicate nanoscience through sound. Using original compositions of music, soundscapes and aural storytelling, this project aims to both find new ways to audibly illustrate scientific concepts and articulate emotions inspired by science at some of the smallest scales. Alice and her collaborators will explore the ability of music and sound to reach new audiences and connect people with science and develop a program of expertise in audio science communication to inform and contribute to science podcasts and immersive experiences that will also make science communication more inclusive.

Developing Interdisciplinary Expertise

Chief Investigator: Lina MarkauskaitePeter Goodyear

The aim of this catalyst is to improve the understanding of how our research nodes and networks create multidisciplinary knowledge and how they learn to function effectively. In addition, the team investigates what it takes for individuals to develop the resourcefulness needed to tackle interdisciplinary challenges. For more information click here.


Chief Investigators: Maria RumyantsevaAli AbbasSusan Park

Enhancing the commercialisation of nano technologies through a better understanding of innovative methodologies for the assessment of the interdependencies between a technology, the economy and the society.

Learn more about the Nano-Economy-Society Catalyst project.

The Kickstarter projects are individual nodes of multidisciplinary research that show the potential to address a Grand Challenge of humanity and our environment or contribute to the growth and mission of a Sydney Nano Network, current or emerging.

Nanoscope: Powering Energy

Chief Investigators: Dr Minkyung Kang, Professor Chiara Neto and Dr Levi Tegg

This Kickstarter's primary focus revolves around enhancing the efficiency and stability of nanocatalysts. Through this, it aims to facilitate rational materials design to address pressing energy demands more effectively.

Engineering Materials' Nano-heterogeneities

Chief Investigators: Dr Xianghai An, Professor Marcela Bilek and Associate Professor Yixiang Gan

This Kickstarter aims to create an innovative concept of hierarchical heterogeneity engineering to develop next-generation alloys by precisely controlling multiscale chemical/structural heterogeneities.

Eliminating implant biofilms

Chief Investigators: Associate Professor Ann Kwan, Dr Jinlong Gao, Dr Giselle Yeo and Professor Margaret Sunde

This Kickstarter aims to engineer nanometre-thick protein coatings that will drastically reduce Infections and rejections, two leading causes of implant failures. 

Cool canopies

Chief Investigators: Dr Alex Song and Dr Arianna Brambilla

This Kickstarter aims to develop passive cooling canopies for open public spaces. Traditional canopies reach 50-60°C under the sun, causing discomfort to people below and significant urban heat-island effects. Utilizing nanophotonic materials, the goal is to achieve a 20°C temperature reduction. By cooling the environment, the project will pivotal role in promoting sustainable habitats for the future.

Quantum Workforce Futures

Chief Investigators: Professor Rae Cooper, Associate Professor Elizabeth Hill, Associate Professor Dimitria Groutsis and Ms Agatha Court

This Kickstarter seeks to understand key challenges in the quantum workforce ecosystem including labour supply, critical skills shortages, career navigation, and workforce equality and inclusion.

Therapeutic protein nanocages

Chief Investigator: Dr Yu Heng Lau and Professor Hilda Pickett

This Kickstarter will establish “protein nanocages” as a proprietary platform technology for nanohealth, from targeted drug delivery to vaccine development. 

Taming nano vibrations

Chief Investigator: Dr Christophe Valahu, Dr Tingrei Tan, Dr Tomas Navickas and Professor Philip Leong

This Kickstarter aims to improve the ion traps by developing machine learning algorithms to accurately predict and compensate their instabilities. 

Chiral Nanophotonics

Chief Investigator: Associate Professor Girish Lakhwani and Professor Deanna D'Alessandro

This Kickstarter will develop new chiral advanced materials for all-optical ultrafast and energy-efficient manipulation of light. Through deep integration of multidisciplinary facets in chemical design, molecular synthesis, optical spectroscopy, and device engineering, the aim is to harness these extra degrees of freedom for all-optical switching and encryption technologies.


Chief Investigator: Dr Robert Wolf, Dr Cyril Laplane, Associate Professor Niels Quack, and Dr Alex Song

This Kickstarter aims to develop novel quantum sensors: an inertial measurement unit and gravitometer based on on-chip levitated nanoparticles in vacuum. 

City Meta Twins

Chief Investigators: Associate Professor Daniel Dias-da-Costa, Professor Luming Shen, Dr Anastasia Globa and Dr Arianna Brambilla

This Kickstarter aims to establish a meta twin hub where accurate digital replicates of the real world merge with AI and remote sensing to virtually recreate first-hand disaster effects on infrastructure assets, enhancing proactive measures and mitigation strategies. Secondly, to enable real-time collection, fusion, and processing of data from diverse sources to effectively unify humanitarian relief and disaster response and recovery actions.

Deeply learned qubits

Chief Investigators: Dr Alex Song and Dr Xanthe Croot

This Kickstarter aims to develop efficient gradient-aware algorithms for optimizing multi-mode superconducting quantum circuits. 

Nano-electromechanical quantum interfaces

Chief Investigators: Dr John Bartholomew, Associate Professor Niels Quack, Dr Elizabeth Marcellina and Tim Newman

This Kickstarter aims to fabricate next generation quantum interfaces by integrating silicon photonics with resonators containing erbium. It also aims to design nano-electromechanical actuators to tune the coupling gap between resonators and waveguides.

Responsible Energy Science

Chief Investigators: Professor Kondo-Francois Aguey-Zinsou, Professor Antonio Tricoli, Professor Ali Abbas, Dr Maria Rumyantseva, Professor Lina Markauskaite, Professor Anita Ho-Baille, Professor Manfred Lenzen and Associate Professor Arunima Malik

This Kickstarter aims to support and accelerate the development of an ARC Centre of Excellence bid on the next clean energy science and technology.

Cellular nano-factories

Chief Investigators: Professor Wojciech Chrzanowski and Professor Chaya Brodie

This project aims to develop novel approaches of biomanufacturing and bioprocessing parameters for the production of cellular multifunctional nanoparticles as next-generation delivery vehicles of biologically active compounds (i.e.,RNA, antibodies, CRISPR-Cas9). These advances will be beneficial (or can be implemented) in the agriculture, veterinary and pharmaceutical industries.

Inaugural Research Programs

These flagship programs focused on bringing together reseachers from across the University to solve some of the world's largest challenges that are of a social, economic and scientific significance. The six inaugural Grand Challenge projects concluding in 2021 are: 


Chief Investigators: David Martinez MartinCorinne Caillaud

High blood pressure (BP) is a major leading risk factor for disability, cardiovascular disease and kidney chronic disease, which is linked to 1 in 5 of all deaths. The lack of suitable technologies to reliably track and communicate BP to patients contributes to have a large number of undiagnosed cases which prevents such patients from receiving existing effective treatments and better lifestyle recommendations. The goal of the project is to develop the scientific and technological grounds to accurately and non-invasively track the BP of patients in real-time and over a period of hours to days. To do that, two different strategies will be pursued: Heart Sound and Continuous Unobtrusive Monitoring of BP with ultrasensitive optical fibres.

Organs-on-chips: Tissues-in-fibres

Chief Investigator: Stuart FraserMarcela Bilek

The modelling of biological processes is moving away from animal experimentation due to ethical and species-dependent concerns. The field of "organs-on-chips" or engineered, stem cell-derived complex cellular interactions grown in vitro is expanding rapidly. The team assembled has the ability to generate highly specific engineered biofunctionalised 2-D and 3-D surfaces to combine with stem cell differentiation to form mature functional tissue-like structures in the dish as well as tissue-like structures in biofunctionalised fibres. This project aims to focus these efforts to generate experimentally and potentially therapeutically useful biological structures in a highly engineered, reproducible manner.


Chief Investigators: Mark GilliesWojciech ChrzanowskiLing Zhu

This project aims to transform treatment of blindness by harnessing the combined advances in nanomedicine engineering and synthetic biology to manipulate the genetic code that enables the blind to see. Through nanotechnology, we can revolutionise the delivery of drugs to treat retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR), which are leading causes of blindness.


Chief Investigator: Robyn Jamieson

This project aims to provide new approaches in therapies for genetic retinal disorders using novel carbon nanoparticle carriers. Novel carbon nanoparticles offer a promising solution for gene therapy and other genetic modification clinical trials. The carbon-based nanoparticles created in plasma have tuneable size, shape, charge, surface chemistry and scalable cost-effective production. They covalently immobilise functional macromolecules on contact and readily enter multiple cell types, with no toxicity, effectively carrying siRNA, plasmid DNA cargo and antibodies to cells of interest.

Quantum Sensing

Chief Investigator: James Rabeau

Quantum technologies have reached an inflection point in terms of technological maturity and are one step closer to being used in real world applications. Quantum sensing effectively takes advantage of the inherent weakness of all quantum systems: their sensitivity to the external environment. This project will undertake a detailed survey of the application landscape for quantum sensing, and in particular, will provide opportunities to collaborate or partner with industry/research to develop focused quantum sensing devices for real-world problems.