Skip to main content
News_

US Government investment in quantum

3 May 2016
The United States funds about half of the University's quantum research

An international consortium comprising European groups and Associate Professor Michael Biercuk's Quantum Control Laboratory at the University of Sydney has been awarded a multimillion-dollar grant from the United States Office of the Director of National Intelligence for research in quantum technology.

A logical qubit is considered a holy grail in quantum information.
Associate Professor Michael Biercuk

Talking quantum tech

Associate Professor Michael Biercuk interviewed on the Mark Bouris Show inside the new $150m Sydney Nanoscience Hub.

An international consortium comprising European groups and the University of Sydney has been awarded a multimillion-dollar research grant from the United States Office of the Director of National Intelligence for research in quantum technology.

Associate Professor Michael Biercuk’s Quantum Control Laboratory at the University of Sydney is the only team based in Australia that has been selected for funding, but builds on a long history of collaboration between US intelligence agencies and the Quantum Science Group at the University of Sydney.

The new consortium including the Quantum Control Laboratory – led out of cutting-edge laboratories at the new $150m Sydney Nanoscience Hub launched recently –  has now been selected by the United States government agency Intelligence Advanced Research Projects Activity (IARPA) as part of its LogiQ program, to help deliver a logical qubit (quantum-bit) based on trapped ions.  

“Ions represent a fantastic platform helping us to learn how we can exploit the most exotic phenomena in quantum physics as resources powering a new generation of technologies,” Associate Professor Biercuk said. 

“There remain enormous challenges bringing any quantum computing technology to reality, but trapped-ions have demonstrated the critical building blocks essential for this effort, decades ahead of other proposed technologies.”

Quantum computing promises dramatic advantages over conventional computation, but progress has been stymied by the fragility of systems obeying the strange rules of quantum physics.  The LogiQ program aims to overcome these challenges by effectively stabilizing the quantum hardware.

“A logical qubit is considered a holy grail in quantum information,” explained Associate Professor Biercuk. “The concept underlying this program is that delicate quantum states can be preserved indefinitely – and put to work performing useful computational tasks – if the information they carry is physically spread out over many qubits.” 

The LogiQ program funds open university and industry research towards overcoming the limitations of current multi-qubit systems by building a logical qubit from a number of imperfect physical qubits. 

“Achieving this requires a major undertaking combining fundamental quantum physics with practical engineering expertise because building a logical qubit requires the underlying quantum hardware to perform extraordinarily well.” 

Associate Professor’s Quantum Control Laboratory was sought out for its expertise in combining quantum physics with control engineering in order to make the quantum hardware more resilient to error. 

The techniques this group has pioneered in this area earned Associate Professor Biercuk a Eureka Prize for Outstanding Early Career Researcher last year, and his related collaborative work on quantum simulation with trapped ions has been named the #8 “world-changing experiment” by BBC Focus. 

“US agencies interested in how quantum technology can be applied to problems in intelligence and security provide the majority of my group’s research support,” Associate Professor Biercuk said. 

“They seek our expertise – and that of my colleagues in the Quantum Science Group – in learning how quantum systems can be coaxed into performing useful tasks and put to work in technological applications.

“While the primary interests relate to quantum computing, this research topic has broad impacts on a wide range of futuristic quantum technologies.”

Further reading:

Associate Professor Biercuk will be speaking at TEDxSydney at the Sydney Opera House on 25 May.

Vivienne Reiner

Media and PR Adviser (Science, Veterinary Science, Agriculture)
Address
  • Room 192, Level 1 Carslaw F07

Related articles

07 July 2020

Engineers use electricity to clean up toxic water

University of Sydney engineers have used electricity to clean up heavily polluted industrial wastewater. They hope the findings will help wineries, pharmaceutical manufacturers and other industries that must comply with strict wastewater regulations.
06 July 2020

Meet 5 of Australia's most innovative engineers

Each year Engineers Australia selects the country's most inventive and forward-thinking engineers. From biomedical 'tattoos' as sensory substitutes to reducing CO2 emissions from oil refineries, meet the five University of Sydney engineers who have been named Australia's most innovative.
03 July 2020

Compulsive internet use by teens linked to emotional issues: study

A new study has found internet addiction in teenagers leads to difficulty regulating emotions. However there was no evidence that pre-existing emotional issues are a predictor of obsessive internet use.
30 June 2020

Native Grains: Narrabri researchers meet with Aboriginal community

Indigenous knowledge and agricultural science are uniting to help support a renaissance in Aboriginal agriculture in western NSW. The winners will include farmers looking for additional income streams.
30 June 2020

Dogs, thunderstorms and fireworks: the fear is real

Dogs with noise phobias show symptoms including panting, pacing and hiding. They are often so frightened they try and escape and can sustain injuries in the process. Because of this, fearful dogs can be a danger to themselves.