Skip to main content
News_

Scientists pave way for diamonds to trace early cancers

12 October 2015
Research published in Nature Communications reveals how nanoscale 'diamonds' can light up early-stage cancers in MRI scans

Physicists at the ARC Centre of Excellence for Engineered Quantum Systems have devised a way to use diamonds to target tumours. The research was published in Nature Communications and led by Professor David Reilly. 

This is a great example of how quantum physics tackles real-world problems—opening the way for us to image and target cancers
Professor David Reilly

Hyperpolerised nanodiamonds

Prof Reilly explains his findings, with animation

Published in Nature Communications, the findings show how a nanoscale, synthetic 'diamond' can light up early-stage cancers in MRI scans.

Physicists from the University of Sydney have devised a way to use diamonds to identify cancerous tumours before they become life threatening.

Their findings, published recently in Nature Communications, reveal how a nano-scale, synthetic version of the precious gem can light up early-stage cancers in non-toxic, non-invasive Magnetic Resonance Imaging (MRI) scans.

Targeting cancers with tailored chemicals is not new but scientists struggle to detect where these chemicals go since, short of a biopsy, there are few ways to see if a treatment has been taken-up by a cancer.

Led by Professor David Reilly from the School of Physics, researchers from the University investigated how nanoscale diamonds could help identify cancers in their earliest stages.

"We knew nano diamonds were of interest for delivering drugs during chemotherapy because they are largely non-toxic and non-reactive," says Professor Reilly.

"We thought we could build on these non-toxic properties realising that diamonds have magnetic characteristics enabling them to act as beacons in MRIs. We effectively turned a pharmaceutical problem into a physics problem."

Professor Reilly's team turned its attention to hyperpolarising nano-diamonds, a process of aligning atoms inside a diamond so they create a signal detectable by an MRI scanner.

"By attaching hyperpolarised diamonds to molecules targeting cancers the technique can allow tracking of the molecules' movement in the body," says Ewa Rej, the paper's lead author.

"This is a great example of how quantum physics research tackles real-world problems, in this case opening the way for us to image and target cancers long before they become life-threatening," says Professor Reilly.

The next stage of the team's work involves working with medical researchers to test the new technology on animals. Also on the horizon is research using scorpion venom to target brain tumours with MRI scanning.

The research documented in the paper Hyperpolarized Nanodiamond with Long Spin Relaxation Times was done by the ARC Centre of Excellence for Engineered Quantum Systems at the University's School of Physics.

Read more on ABC online.

Verity Leatherdale

Manager, Faculty Media and PR
Fax
  • +61 2 9351 3737
Address
  • Level 2 Services Building G12

Related articles

23 September 2020

When does a second COVID surge end? Look at the maths

Mathematicians have analysed COVID-19 infection rates from all US states. The results suggest public health officials shouldn't relax restrictions until surge periods are demonstrably over. They also used the method to look at Australian infection rates.
24 September 2020

University of Sydney to advance COVID-19 DNA vaccine to human trials

The University of Sydney is testing a novel DNA-based COVID-19 vaccine with the goal of being administered using a needle-free system.
13 August 2015

Resetting the table to halt expanding waistlines

Can farmers, producers and regulators work together at all points of the food supply chain to help curb Australia’s growing obesity problem?

14 August 2015

Scientists should take a leaf out of wellness bloggers' books

How can we distinguish credible wellness information from unfounded pseudoscience? And why is it that wellness gurus are often taken more seriously than scientists? Jackie Randles writes.

12 August 2015

How mobile phones could save us from obesity

A world-first intervention designed by Charles Perkins Centre researchers specifically for young people found mobile phones could improve health and halt weight gain. 

10 August 2015

Starchy carbs, not a Paleo diet, advanced the human race

Starchy carbohydrates were a major factor in the evolution of the human brain, according to a new study co-authored by researchers from the University of Sydney's Charles Perkins Centre and Faculty of Agriculture and Environment.

31 August 2015

Health benefits of dog ownership explored in new research node

Man's best friend is set to become his lab partner, with the launch of a research node on the health effects of dog ownership at the University of Sydney's Charles Perkins Centre.

03 November 2015

Cancer substantially affects cognition: international research

International research team finds even localised cancer is associated with sustained cognitive impairment.

09 November 2015

Thousands of dollars in scholarships still available for 2016

If you’re studying at Sydney next year there are numerous scholarships still open for new and current students across many study areas including engineering, the sciences, education, pharmacy, dentistry, nursing, medicine, social work, engineering, and business.

12 November 2015

We will find a way to predict the spread of disease

Software 'agents' modelled on real-life individuals will be used by University of Sydney researchers to develop high-precision computer models that can predict where or when an epidemic may strike.