Skip to main content

We are aiming for an incremental return to campus in accordance with guidelines provided by NSW Health and the Australian Government. Until this time, learning activities and assessments will be planned and scheduled for online delivery where possible, and unit-specific details about face-to-face teaching will be provided on Canvas as the opportunities for face-to-face learning become clear.

We are currently working to resolve an issue where some unit outline links are unavailable. If the link to your unit outline does not appear below, please use the link in your Canvas site. If no link is available on your Canvas site, please contact your unit coordinator.

Unit of study_

AERO4560: Flight Mechanics 2

This unit aims to develop an understanding of the application of flight mechanics principles to modern aircraft systems. Students will gain skills in problem solving in the areas of dynamic aircraft behaviour, aircraft sensitivity to wind gusts, control systems development and aircraft handling analysis. At the end of this unit students will be able to: understand the nature of an aircraft's response to control inputs and atmospheric disturbances, including the roles of the various modes of motion; analyse an aircraft's response to control inputs in the frequency domain using Laplace Transforms and Transfer Function representations; represent and model wind gust distributions using stochastic methods (Power Spectral Density); analyse an aircraft's response to disturbances (wind gust inputs) by combining Transfer Function representations with gust PSD's; understand the principles of stability augmentation systems and autopilot control systems in aircraft operation, their functions and purposes; understand basic feedback control systems and classical frequency domain loop analysis; understand the characteristics of closed loop system responses; understand the characteristics of PID, Lead, Lag and Lead-Lag compensators, and to be competent in designing suitable compensators using Bode and Root-locus design techniques; design multi-loop control and guidance systems and understand the reasons for their structures.

Code AERO4560
Academic unit Aerospace, Mechanical and Mechatronic
Credit points 6
Prerequisites:
? 
AERO3560 and AMME3500
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
AMME2500 develops the basic principles of engineering mechanics and system dynamics that underpin this course. AERO3560 Flight Mechanics 1 develops the specifics of aircraft flight dynamics and stability. AMME3500 Systems control covers basic system theory and control system synthesis techniques.

At the completion of this unit, you should be able to:

  • LO1. develop the ability to work as a member of a team and to take responsibility for the meeting of project goals and completion of project sub-tasks. Communicate with team members to negotiate strategies to satisfy project requirements
  • LO2. programme in Matlab to analyse dynamic aircraft behaviour, aircraft sensitivity to wind gusts, control system development and aircraft handling analysis
  • LO3. develop skills in the preparation and presentation of analytical and design reports to standards expected in industry
  • LO4. understand the nature of an aircraft’s response to control inputs and atmospheric disturbances, including the roles of the various modes of motion
  • LO5. analyse an aircraft’s response to control inputs in the frequency domain using laplace transforms and transfer function representations
  • LO6. represent and model wind gust distributions using stochastic methods (power spectral density). Analyse an aircraft’s response to disturbances (wind gust inputs) by combining transfer function representations with gust PSD’s
  • LO7. understand the principles of stability augmentation systems and autopilot control systems in aircraft operation, their functions and purposes
  • LO8. understand basic feedback control systems and classical frequency domain loop analysis
  • LO9. understand the characteristics of closed loop system responses
  • LO10. understand the characteristics of PID, Lead, Lag and Lead-Lag compensators, and be competent in designing suitable compensators using Bode and Root-locus design techniques. Design multi-loop control and guidance systems and understand the reasons for their structures.

Unit outlines

Unit outlines will be available 2 weeks before the first day of teaching for 1000-level and 5000-level units, or one week before the first day of teaching for all other units.

There are no unit outlines available online for previous years.