Skip to main content

We are aiming for an incremental return to campus in accordance with guidelines provided by NSW Health and the Australian Government. Until this time, learning activities and assessments will be planned and scheduled for online delivery where possible, and unit-specific details about face-to-face teaching will be provided on Canvas as the opportunities for face-to-face learning become clear.

We are currently working to resolve an issue where some unit outline links are unavailable. If the link to your unit outline does not appear below, please use the link in your Canvas site. If no link is available on your Canvas site, please contact your unit coordinator.

Unit of study_

AERO9301: Applied Finite Element Analysis

This unit aims to teach fundamentals of modern numerical and analytical techniques for evaluating stresses, strains, deformations and strengths of representative aerospace structures. In particular the focus is on developing an understanding of: Fundamental concepts and formulations of the finite element methods for basic structural analysis; Elements for typical aerospace structures- such as beams/frames, plates/shells, and their applications and limitations; Finite element techniques for various types of problems pertinent to aerospace structures; and developing hands-on experience of using selected commercial finite element analysis program. At the end of this unit of study the following will have been covered: Introduction to Finite Element Method for modern structural and stress analysis; One-dimensional rod elements; Generalization of FEM for elasticity; Two- and three-dimensional trusses; FEA for beams and frames in 2D and 3D; Two-dimensional problems using constant strain triangular elements; The two-dimensional isoparametric elements; Plates and shells elements and their applications; FEA for axisymmetric shells and pressure vessels, shells of revolution; FEA for axisymmetric solids subjected to axi-symmetric loading; FEA for structural dynamics, eigenvalue analysis, modal response, transient response; Finite element analysis for stress stiffening and buckling of beams, plates and shells; Three-dimensional problems in stress analysis; Extensions to the element library, higher order elements, special elements; Constraints; FEA modeling strategy; FEA for heat conduction; FEA for non-linear material and geometric analysis.

Code AERO9301
Academic unit Aerospace, Mechanical and Mechatronic
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
AERO9360 or AERO8360 or MECH9361 or MECH8361. Linear algebra, calculus and partial differential equations, basic knowledge in solid mechanics 1 (AERO2301), basic knowledge in elasticity.

At the completion of this unit, you should be able to:

  • LO1. work on a project with a team member, this includes rationally selecting a project, developing modeling details, interpreting results and writing professional report
  • LO2. interpret, justify and communicate the numerical results in a professional manner
  • LO3. use selected commercial FEA package and gain hands-on experience, including developing modeling strategy and debugging
  • LO4. understand fundamental concepts of finite element methods
  • LO5. understand and be able to derive shape functions, stiffness matrices and equivalent load vectors for selected element
  • LO6. assemble the global stiffness matrix and global equivalent load vector
  • LO7. understand the difference of elements and their application scopes and limitations
  • LO8. use different solvers to solve different types of structure problems, including aerospace structures.

Unit outlines

Unit outlines will be available 2 weeks before the first day of teaching for 1000-level and 5000-level units, or one week before the first day of teaching for all other units.

There are no unit outlines available online for previous years.