Unit of study_

# AMME3500: System Dynamics and Control

### 2024 unit information

This unit of study aims to allow students to develop an understanding of methods for modeling and controlling linear, time-invariant systems. Techniques examined will include the use of differential equations and frequency domain approaches to modeling of systems. This will allow students to examine the response of a system to changing inputs and to examine the influence of external stimuli such as disturbances on system behaviour. Students will also gain an understanding of how the responses of these mechanical systems can be altered to meet desired specifications and why this is important in many engineering problem domains. The study of control systems engineering is of fundamental importance to most engineering disciplines, including Mechanical, Mechatronic, Biomedical, and Aerospace Engineering. Control systems are found in a broad range of applications within these disciplines, from aircraft and spacecraft to robots, automobiles, manufacturing processes, and medical diagnostic systems. The concepts taught in this course introduce students to the mathematical foundations behind the modelling and control of linear, time-invariant dynamic systems. In particular, topics addressed in this course will include: 1. Techniques for modelling mechanical systems and understanding their response to control inputs and disturbances. This will include the derivation of differential equations and use of frequency domain (Laplace transform) methods for their solution and analysis. 2. Representation of systems in a feedback control system as well as techniques for determining what desired system performance specifications are achievable, practical and important when the system is under control 3. Techniques including Root Locus, Bode Plots, and State Space for analysis and design of feedback control systems. 4. Case studies inspired by real-world problems in control engineering.

## Unit details and rules

#### Engineering

Study level Undergraduate Aerospace, Mechanical and Mechatronic 6
 Prerequisites: ? AMME2000 and AMME2500 None None None

At the completion of this unit, you should be able to:

• LO1. mathematically model mechanical and other systems and determine their response characteristics based on the physical properties of the system.
• LO2. understand how desired specifications of a mechanical system such as stability, overshoot, rise time, the time constant of a system, natural frequency and damping ratio can be represented mathematically and how they depend on system parameters
• LO3. demonstrate an ability to design controllers and meet specifications using state space approaches and frequency design. Understand the relative strengths and weaknesses of each technique.
• LO4. understand the role of feedback in providing robustness to modelling uncertainty and external disturbances
• LO5. analyse and design control loops using Matlab and Simulink software tools.

## Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA   Location Outline
Semester 1 2024
Normal day Camperdown/Darlington, Sydney
Session MoA   Location Outline
Semester 1 2020
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Remote
Semester 1 2022
Normal day Camperdown/Darlington, Sydney
Semester 1 2022
Normal day Remote
Semester 1 2023
Normal day Camperdown/Darlington, Sydney
Semester 1 2023
Normal day Remote

Find your current year census dates

### Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.