Skip to main content
Unit of study_

CHEM3123: Computational Chemistry

2024 unit information

As the power of computers increases, so does their capacity to provide new tools for scientific analysis. Where once computational chemistry was the domain of specialists, computational methods are now commonly used across all areas of chemistry, both in chemical research and in the application of chemical knowledge in industry and society. For example, techniques of computational chemistry are today used for drug discovery, materials prediction, and the modelling of complex environmental systems. The object of this unit is to introduce students to the goals, methods and critical assessment of computer modelling in chemistry. The unit will address the four goals of modelling: explanation, prediction, interpretation and discovery. In exploring how computational methods meet these goals, you will cover topics in biomolecular modelling, molecular electronic structure, chemical kinetics, and experimental data interpretation. You will learn how to design and carry out computations for a range of chemical problems and engage in hands-on calculations. No prior knowledge of computers or programming is required. By doing this unit, you will develop an understanding of the variety of ways computers can be used and how to use sound criteria for judging the quality of computational results and the reliability of conclusions based on those results.

Unit details and rules

Managing faculty or University school:

Chemistry Academic Operations

Code CHEM3123
Academic unit Chemistry Academic Operations
Credit points 6
Prerequisites:
? 
[(CHEM2401 or CHEM2911 or CHEM2915) and (CHEM2402 or CHEM2524 or CHEM2912 or CHEM2916 or CHEM2924)] or (CHEM2521 or CHEM2921 or CHEM2991)
Corequisites:
? 
None
Prohibitions:
? 
CHEM3117 or CHEM3917 or CHEM3923
Assumed knowledge:
? 
None

At the completion of this unit, you should be able to:

  • LO1. Explain how to design and carry out computations for a range of chemical problems ​
  • LO2. Apply a range of computational methods and techniques for hands-on calculations​
  • LO3. Interpret computational results and critically assess their quality and realiability in context to methods used and approximations made while carrying out the calculations.​
  • LO4. Design computational methods to solve chemical problems in topics of biomolecular modelling, molecular electronic structure, chemical kinetics, and experimental data interpretation. ​
  • LO5. Carry out experimental work safely and competently in a chemical laboratory​.
  • LO6. ​Develop skills to work collaboratively in responsible data collection, analysis and communication and advance chemical enquiry​.
  • LO7. Evaluate and interpret scientific information and experimental data and judge their reliability and significance​
  • LO8. Communicate scientific information and laboratory findings appropriately both orally and through written work​

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 2 2024
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Session MoA ?  Location Outline ? 
Semester 2 2021
Normal day Camperdown/Darlington, Sydney
Semester 2 2021
Normal day Remote
Semester 2 2022
Normal day Camperdown/Darlington, Sydney
Semester 2 2022
Normal day Remote
Semester 2 2023
Normal day Camperdown/Darlington, Sydney

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.