Skip to main content

During 2021 we will continue to support students who need to study remotely due to the ongoing impacts of COVID-19 and travel restrictions. Make sure you check the location code when selecting a unit outline or choosing your units of study in Sydney Student. Find out more about what these codes mean. Both remote and on-campus locations have the same learning activities and assessments, however teaching staff may vary. More information about face-to-face teaching and assessment arrangements for each unit will be provided on Canvas.

Unit of study_

CHNG2803: Heat and Mass Transfer

This unit of study teaches principles of heat and mass transfer required for chemical and biomolecular engineering. It covers steady and transient conduction and diffusion, convective transport of heat and mass, and radiative heat transfer. It runs concurrently with CHNG2801 (Fluid Mechanics) to provide students with the tools and know-how to tackle engineering problems related to transport phenomena. This unit of study also includes project-based study components including a research project on heat transfer phenomena in biological systems and a lab session on mass transfer. Students will develop a physical understanding of the underlying phenomena and gain the ability to solve real heat and mass transfer problems of engineering significance.

Code CHNG2803
Academic unit Chemical and Biomolecular Engineering
Credit points 6
(MATH1001 OR MATH1021 OR MATH1901 OR MATH1921) AND (MATH1002 OR MATH1902) AND (MATH1003 OR MATH1023 OR MATH1903 OR MATH1923) AND (MATH1005 OR MATH1905 OR BUSS1020) AND (ENGG1801 OR ENGG1810) AND CHNG1103
Assumed knowledge:
It is assumed that students will be concurrently enrolled in or have already completed: CHNG2801 or equivalent, and (CHNG2802 or MATH2XXX)

At the completion of this unit, you should be able to:

  • LO1. report findings and synthesise conclusions accurately and informatively
  • LO2. work creatively and systematically with others in ensuring correct procedures and accurate results
  • LO3. design heat exchange equipment using overall heat transfer coefficient, fouling factors, LMTD, F-factor, equipment selection, insulation
  • LO4. compute heat transfer rate and/or temperature distribution for processes involving heat transfer
  • LO5. develop representative models of real processes and draw conclusion from analysis of pressure drop, fouling effects, performance evaluation (NTU), and changes in parameters
  • LO6. understand the mechanisms of heat transfer without phase change, including thermal conductivity, heat capacity, conduction, convection, free/force heat transfer coefficients/correlations, radiation, and combinations thereof
  • LO7. understand the mechanisms of heat transfer with phase change, including latent heat, boiling and condensation
  • LO8. understand the mechanisms of mass transfer, including diffusion mass transfer, transient diffusion, interphase mass transfer.