Skip to main content

Due to the exceptional circumstances caused by the COVID-19 pandemic, the learning activities, assessments and attendance requirements for this unit may be subject to late changes. Please refer to this unit outline regularly for up to date information and to notices in the unit’s Canvas site for any adjustments.

Unit of study_

CHNG9303: Reaction Engineering

This unit of study focuses on the understanding of the key concepts of reaction engineering in process design. It covers key principles of reaction kinetics, including reaction mechanisms, temperature and concentration dependence of chemical reactions, and catalysis effect in reactor design. This course employs an integrated approach in combining the basic principles of material and energy balance, thermodynamics, heat and mass transfer, and fluid mechanics with those of chemical reaction kinetics to help students select and design the most suitable reactor for a particular reaction system. It provides an introduction to reactor design through topics, such as ideal batch reactors (constant and varying volume), stoichiometry and reaction mole balance equation, single and multiple reaction systems, catalysts and catalytic reactions, and using experimental reaction data to estimate rate laws. Students will learn how to design continuous isothermal and nonisothermal reactors, variable density reactors, multiple reactors in series and parallel, mixed flow reactors in series, recycle reactors, and carry out size comparisons of ideal reactors and optimisation of operating conditions.

Code CHNG9303
Academic unit Chemical and Biomolecular Engineering
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
CHNG3803 OR CHNG5803
Assumed knowledge:
? 
CHNG9201 and CHNG9202 and CHNG9204. Mass and energy balances, physical chemistry, physics.

At the completion of this unit, you should be able to:

  • LO1. Apply key concepts and principles of reaction engineering to evaluate reactor designs and operating conditions for given reaction systems
  • LO2. Determine equilibrium conditions in reactive systems from thermodynamic criteria
  • LO3. Model reaction engineering systems
  • LO4. Carry out size comparisons of ideal reactors
  • LO5. Optimize operating conditions for ideal reactors
  • LO6. Estimate rate laws by using experimental reaction data
  • LO7. Communicate effectively in writing

Unit outlines

Unit outlines will be available 2 weeks before the first day of teaching for 1000-level and 5000-level units, or one week before the first day of teaching for all other units.

There are no unit outlines available online for previous years.