Skip to main content

During 2021 we will continue to support students who need to study remotely due to the ongoing impacts of COVID-19 and travel restrictions. Make sure you check the location code when selecting a unit outline or choosing your units of study in Sydney Student. Find out more about what these codes mean. Both remote and on-campus locations have the same learning activities and assessments, however teaching staff may vary. More information about face-to-face teaching and assessment arrangements for each unit will be provided on Canvas.

Unit of study_

COMP5048: Visual Analytics

Visual Analytics aims to facilitate the data analytics process through Information Visualisation. Information Visualisation aims to make good pictures of abstract information, such as stock prices, family trees, and software design diagrams. Well designed pictures can convey this information rapidly and effectively. The challenge for Visual Analytics is to design and implement effective Visualisation methods that produce pictorial representation of complex data so that data analysts from various fields (bioinformatics, social network, software visualisation and network) can visually inspect complex data and carry out critical decision making. This unit will provide basic HCI concepts, visualisation techniques and fundamental algorithms to achieve good visualisation of abstract information. Further, it will also provide opportunities for academic research and developing new methods for Visual Analytic methods.

Code COMP5048
Academic unit Computer Science
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
Experience with data structures and algorithms as covered in COMP9103 OR COMP2123 OR COMP2823 OR INFO1105 OR INFO1905 (or equivalent UoS from different institutions).

At the completion of this unit, you should be able to:

  • LO1. select appropriate visual variables, space utilisation methods, and levels of organisation of visual components, to depict complex data
  • LO2. select, apply, and modify visualisation methods suited to a given problem domain, in order to facilitate data analytic process through visual inspection
  • LO3. understand basic computational concepts, techniques, and algorithms to produce good visualisation of abstract data
  • LO4. understand the basic human-computer interaction principles, which influence the production of good/effective visualisation

Unit outlines

Unit outlines will be available 2 weeks before the first day of teaching for the relevant session.