Useful links
This course focuses on methods and techniques to efficiently explore and analyse large data collections. Where are hot spots of pedestrian accidents across a city? What are the most popular travel locations according to user postings on a travel website? The ability to combine and analyse data from various sources and from databases is essential for informed decision making in both research and industry. Students will learn how to ingest, combine and summarise data from a variety of data models which are typically encountered in data science projects, such as relational, semi-structured, time series, geospatial, image, text. As well as reinforcing their programming skills through experience with relevant Python libraries, this course will also introduce students to the concept of declarative data processing with SQL, and to analyse data in relational databases. Students will be given data sets from, eg. , social media, transport, health and social sciences, and be taught basic explorative data analysis and mining techniques in the context of small use cases. The course will further give students an understanding of the challenges involved with analysing large data volumes, such as the idea to partition and distribute data and computation among multiple computers for processing of 'Big Data'. This unit is an alternative to DATA2001, providing coverage of some additional, more sophisticated topics, suited for students with high academic achievement.
Code | DATA2901 |
---|---|
Academic unit | Computer Science |
Credit points | 6 |
Prerequisites:
?
|
75% or above from (DATA1002 or DATA1902 or INFO1110 or INFO1910 or INFO1903 or INFO1103 or ENGG1810) |
---|---|
Corequisites:
?
|
None |
Prohibitions:
?
|
DATA2001 |
At the completion of this unit, you should be able to:
Unit outlines will be available 2 weeks before the first day of teaching for the relevant session.
Key dates through the academic year, including teaching periods, census, payment deadlines and exams.
Enrolment, course planning, fees, graduation, support services, student IT
Code of Conduct for Students, Conditions of Enrollment, University Privacy Statement, Academic Integrity
Academic appeals process, special consideration, rules and guidelines, advice and support
Policy register, policy search
Scholarships, interest free loans, bursaries, money management
Learning Centre, faculty and school programs, Library, online resources
Student Centre, counselling & psychological services, University Health Service, general health and wellbeing