Useful links
The unit introduces the theory and application of statistical machine learning. Topics covered include supervised versus unsupervised learning; regression and classification; resampling methods including cross-validation and Bootstrap; regularisation and shrinkage approaches such as Lasso; tree-based methods including decision tree and random forest; and support vector machines. The unit focuses on the applications of statistical machine learning in economics, and computer software such as R and Matlab are used throughout the unit.
Code | ECMT3185 |
---|---|
Academic unit | Economics |
Credit points | 6 |
Prerequisites:
?
|
(ECMT2150 or ECMT2950) and ECMT2160 |
---|---|
Corequisites:
?
|
None |
Prohibitions:
?
|
QBUS3820 |
At the completion of this unit, you should be able to:
Unit outlines will be available 2 weeks before the first day of teaching for the relevant session.
Key dates through the academic year, including teaching periods, census, payment deadlines and exams.
Enrolment, course planning, fees, graduation, support services, student IT
Code of Conduct for Students, Conditions of Enrollment, University Privacy Statement, Academic Integrity
Academic appeals process, special consideration, rules and guidelines, advice and support
Policy register, policy search
Scholarships, interest free loans, bursaries, money management
Learning Centre, faculty and school programs, Library, online resources
Student Centre, counselling & psychological services, University Health Service, general health and wellbeing