Skip to main content
Unit of study_

ELEC9304: Control

2025 unit information

This unit is mainly concerned with the application of feedback control to continuous-time, linear time-invariant systems. It aims to give the students an appreciation of the possibilities in the design of control and automation in a range of application areas. The concepts learnt in this unit will be made use of heavily in many units of study in the areas of communication, control, electronics, and signal processing. The following specific topics are covered: Modelling of physical systems using state space, differential equations, and transfer functions, dynamic response of linear time invariant systems and the role of system poles and zeros on it, simplification of complex systems, stability of feedback systems and their steady state performance, Routh-Hurwitz stability criterion, sketching of root locus and controller design using the root locus, Proportional, integral and derivative control, lead and lag compensators, frequency response techniques, Nyquist stability criterion, gain and phase margins, compensator design in the frequency domain, state space design for single input single-output systems, pole placement state variable feedback control and observer design.

Unit details and rules

Managing faculty or University school:

Engineering

Study level Postgraduate
Academic unit School of Electrical and Computer Engineering
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
ELEC5735
Assumed knowledge:
? 
Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, Physics; solution of linear differential equations, Matrix Theory, eigenvalues and eigenvectors; linear electrical circuits, ideal op-amps; continuous linear time-invariant systems and their time and frequency domain representations, Laplace transform, Fourier transform

At the completion of this unit, you should be able to:

  • LO1. recognise the limits of the information presented in the lectures and target information searches through varied sources and formats so as to synthesise information relevant to the specific topic at hand
  • LO2. make written and oral presentations in the form of lab reports, tutorial presentations, and critical self-reflection
  • LO3. work in a team to discuss and draw upon the ideas and knowledge of others to solve and present tutorial problems and conduct lab experiments.
  • LO4. design and test feedback control schemes for the lab equipment to achieve different performance requirements
  • LO5. conduct lab experiments and take measurements to perform a model identification for a particular engineering problem
  • LO6. analyse the dynamic response of linear time invariant systems and the role of system poles and zeros on it
  • LO7. simplify complex system consisting of interconnections of many linear subsystems
  • LO8. determine the stability of feedback systems and their steady state performance
  • LO9. design simple controllers to achieve stability and transient performance requirements using root locus, frequency response and state space techniques
  • LO10. model physical systems (e.g. electrical, mechanical, and electromechanical systems) using state space, differential equations, and transfer functions

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 2 2024
Normal day Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 2 2025
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Session MoA ?  Location Outline ? 
Semester 2 2020
Normal day Camperdown/Darlington, Sydney
Semester 2 2021
Normal day Camperdown/Darlington, Sydney
Semester 2 2021
Normal day Remote
Semester 2 2022
Normal day Camperdown/Darlington, Sydney
Semester 2 2022
Normal day Remote
Semester 2 2023
Normal day Camperdown/Darlington, Sydney

Find your current year census dates

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.