Skip to main content
Unit of study_

ENGG9801: Engineering Computing

2021 unit information

This unit introduces students to solving engineering problems using computers. Students learn how to organize data to present and understand it better using a spreadsheet (Excel), and also how to instruct the computer exactly what to do to solve complex problems using programming (Matlab). Real engineering examples, applications and case-studies are given, and students are required to think creatively and solve problems using computer tools. Matlab will cover three-quarters of the unit. The remaining one-quarter will be devoted to the use of Excel in engineering scenarios. Furthermore, cross integration between Matlab and Excel will also be highlighted. No programming experience is required or assumed. Students are assumed to have a basic understanding of mathematics and logic, and very elementary computing skills.

Unit details and rules

Managing faculty or University school:

Computer Science

Code ENGG9801
Academic unit Computer Science
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
ENGG5801 OR ENGG1801
Assumed knowledge:
? 
None

At the completion of this unit, you should be able to:

  • LO1. Develop programs to solve problems using computers.
  • LO2. Employ conventions for writing consistently readable code.
  • LO3. Compose a structured algorithmic design to solve a specified problem.
  • LO4. Apply fundamental programming principles including data types, variables and operators, flow-control: simple statements, sequences, if-then-else, loops, functions, input/output and arrays; to produce a program that solves a specified problem.
  • LO5. Compose, analyse, and trace procedural code to determine the expected output of a given program or produce a specified output.
  • LO6. Apply testing methods and assess programs through debugging with the ability to write a set of tests for a small program or function
  • LO7. Understand standard modules and packages in Python
  • LO8. Read and interpret different input formats to produce the desired outcome.
  • LO9. Apply basic numerical methods including numerical integration, curve fitting, root solving/optimisation and the least squares method
  • LO10. Write simple functions to perform computational methods including calculation of basic statistics, regression, correlation, searching, sorting on data.
  • LO11. Plot in two and three dimensions to produce an appropriate visualization of the data.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

There are no availabilities for this year.
Session MoA ?  Location Outline ? 
Semester 1 2020
Normal day Camperdown/Darlington, Sydney
Intensive January 2020
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Intensive February 2021
Normal day Remote

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.