Skip to main content
Unit of study_

ENVX3001: Environmental GIS

The critical role of geospatial science in major disturbance events, such as bushfires, coastal erosion and mapping spatio-temporal trends in NSW COVID-19 cases, has placed GIScience at the forefront of policy agendas, information sharing and community engagement. The disruptive nature of this field is clear and demand for expertise in GIS, Earth observation, spatial data analytics and location intelligence has grown. However, this expertise needs to be backed by an understanding of the science, conceptual principles and ethics that underpin these enabling technologies. We will incorporate the transformative potential of GIScience driven technologies demonstrated by disturbance events. This unit content will expose you to a breadth of analytical capabilities within GIS, various applications to complex environmental and coastal issues and ethical considerations in using and disseminating geographical information and knowledge. The fundamentals of GIS, spatial modelling and Earth observation will be introduced in the context of environmental and coastal management. You will build on these foundational concepts through problem-based learning in which GIS methods will be applied to address issues relating to fire and biodiversity, acid sulphate soils, coastal processes and water security. This unit is co-taught with GEOS3014/3914. GIScience, spatial reasoning and Earth observation in the context of environmental and coastal science and management is core to the learning objectives of both units.

Code ENVX3001
Academic unit Life and Environmental Sciences Academic Operations
Credit points 6
ENVI1003 or AGEN1002 or GEOS1XXX or BIOL1XXX or GEOS2X11

At the completion of this unit, you should be able to:

  • LO1. define the basic terms associated with geographic information science, including technologies, systems and studies
  • LO2. differentiate between spatial data and spatial information
  • LO3. source geospatial data from government and private agencies
  • LO4. decipher various air-borne and space-borne sensors and their carriers
  • LO5. apply geo-image analytical techniques for land resources assessment and management
  • LO6. build spatial databases of geographical entities for data querying and retrieval
  • LO7. apply conceptual models of spatial phenomena for practical decision-making in, for example, land management and land use planning, etc
  • LO8. apply critical analysis of situations to apply the concepts of spatial phenomena to solve environmental and land resource problems
  • LO9. communicate results of scientific investigations effectively through various means such as oral, written and essay formats, use major GIS and remote sensing software packages, e.g. ArcGIS™.

Unit outlines

Unit outlines will be available 2 weeks before the first day of teaching for the relevant session.