Skip to main content
Unit of study_

MATH1111: Introduction to Calculus

2025 unit information

This unit is an introduction to the calculus of one variable. Topics covered include elementary functions, differentiation, basic integration techniques and coordinate geometry in three dimensions. Applications in science and engineering are emphasised.

Unit details and rules

Managing faculty or University school:

Science

Study level Undergraduate
Academic unit Mathematics and Statistics Academic Operations
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
MATH1011 or MATH1901 or MATH1906 or MATH1001 or HSC Mathematics Extension 1 or HSC Mathematics Extension 2 or ENVX1001 or MATH1021 or MATH1921 or MATH1931
Assumed knowledge:
? 
Knowledge of algebra and trigonometry equivalent to NSW Year 10

At the completion of this unit, you should be able to:

  • LO1. Apply mathematical logic and rigour to solving problems, and express mathematical ideas coherently in written and oral form;
  • LO2. Demonstrate fluency in manipulating real numbers, their symbolic representations, operations, and solve associated algebraic equations and inequalities;
  • LO3. Develop fluency with lines, coordinate geometry in two dimensions, the notion of a function, its natural domain, range and graph;
  • LO4. Become conversant with elementary functions, including trigonometric, exponential, logarithmic and hyperbolic functions and be able to apply them to real phenomena and to yield solutions of associated equations;
  • LO5. Perform operations on functions and be able to invert functions where appropriate;
  • LO6. Understand the definitions of a derivative, definite and indefinite integral and be able to apply the definitions to elementary functions;
  • LO7. Develop fluency in rules of differentiation, such as the product, quotient and chain rules, and use them to differentiate complicated functions;
  • LO8. Understand and apply the Fundamental Theorem of Calculus; and develop fluency in techniques of integration, such as integration by substitution, the method of partial fractions and integration by parts;
  • LO9. Develop some fluency with coordinate geometry in three dimensions, planes, surfaces, ellipsoids, paraboloids, level curves and qualitative features such as peaks, troughs and saddle points.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 1 2024
Normal day Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 1 2025
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Session MoA ?  Location Outline ? 
Semester 1 2020
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Remote
Semester 1 2022
Normal day Camperdown/Darlington, Sydney
Semester 1 2022
Normal day Remote
Semester 1 2023
Normal day Camperdown/Darlington, Sydney
Semester 1 2023
Normal day Remote

Find your current year census dates

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.

Important enrolment information

Departmental permission requirements

If you see the ‘Departmental Permission’ tag below a session, it means you need faculty or school approval to enrol. This may be because it’s an advanced unit, clinical placement, offshore unit, internship or there are limited places available.

You will be prompted to apply for departmental permission when you select this unit in Sydney Student.

Read our information on departmental permission.

Additional advice

Students who have previously successfully studied calculus at a level at least equivalent to HSC Mathematics are prohibited.