Useful links
The theory of ordinary differential equations is a classical topic going back to Newton and Leibniz. It comprises a vast number of ideas and methods. The theory has many applications and stimulates new developments in almost all areas of mathematics. The emphasis is on qualitative analysis including phase-plane methods, bifurcation theory and the study of limit cycles. The more theoretical part includes existence and uniqueness theorems, linearisation, and analysis of asymptotic behaviour. The applications in this unit will be drawn from predator-prey systems, population models, chemical reactions, and other equations and systems from mathematical biology. You will learn how to use ordinary differential equations to model biological, chemical, physical and/or economic systems and how to use different methods from dynamical systems theory and the theory of nonlinear ordinary differential equations to find the qualitative outcome of the models. By doing this unit you will develop skills in using and analysing nonlinear differential equations which will prepare you for further studies in mathematics, systems biology or physics or for careers in mathematical modelling.
Code | MATH4063 |
---|---|
Academic unit | Mathematics and Statistics Academic Operations |
Credit points | 6 |
Prerequisites:
?
|
(A mark of 65 or greater in 12cp of MATH2XXX units of study) or [12cp from (MATH3061 or MATH3066 or MATH3076 or MATH3078 or MATH3961 or MATH3962 or MATH3968 or MATH3969 or MATH3971 or MATH3974 or MATH3976 or MATH3977 or MATH3978 or MATH3979)] |
---|---|
Corequisites:
?
|
None |
Prohibitions:
?
|
MATH3063 or MATH3963 |
Assumed knowledge:
?
|
Linear ODEs (for example, MATH2921), eigenvalues and eigenvectors of a matrix, determinant and inverse of a matrix and linear coordinate transformations (for example, MATH2922), Cauchy sequence, completeness and uniform convergence (for example, MATH2923) |
At the completion of this unit, you should be able to:
Unit outlines will be available 2 weeks before the first day of teaching for the relevant session.
Key dates through the academic year, including teaching periods, census, payment deadlines and exams.
Enrolment, course planning, fees, graduation, support services, student IT
Code of Conduct for Students, Conditions of Enrollment, University Privacy Statement, Academic Integrity
Academic appeals process, special consideration, rules and guidelines, advice and support
Policy register, policy search
Scholarships, interest free loans, bursaries, money management
Learning Centre, faculty and school programs, Library, online resources
Student Centre, counselling & psychological services, University Health Service, general health and wellbeing