Skip to main content

During 2021 we will continue to support students who need to study remotely due to the ongoing impacts of COVID-19 and travel restrictions. Make sure you check the location code when selecting a unit outline or choosing your units of study in Sydney Student. Find out more about what these codes mean. Both remote and on-campus locations have the same learning activities and assessments, however teaching staff may vary. More information about face-to-face teaching and assessment arrangements for each unit will be provided on Canvas.

Unit of study_

MATH4412: Advanced Methods in Applied Mathematics

Mathematical approaches to many real-world problems are underpinned by powerful and wide ranging mathematical methods and techniques that have become standard in the field and should be in the toolbag of all applied mathematicians. This unit will introduce you to a suite of those methods and give you the opportunity to engage with applications of these methods to well-known problems. In particular, you will learn both the theory and use of asymptotic methods which are ubiquitous in applications requiring differential equations or other continuous models. You will also engage with methods for probabilistic models including information theory and stochastic models. By doing this unit you will develop a broad knowledge of advanced methods and techniques in applied mathematics and know how to use these in practice. This will provide a strong foundation for using mathematics in a broad sweep of practical applications in research, in industry or in further study.

Code MATH4412
Academic unit Mathematics and Statistics Academic Operations
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
None
Assumed knowledge:
? 
A thorough knowledge of vector calculus (e.g., MATH2X21) and of linear algebra (e.g., MATH2X22). Some familiarity with partial differential equations (e.g., MATH3X78) and mathematical computing (e.g., MATH3X76) would be useful.

At the completion of this unit, you should be able to:

  • LO1. Demonstrate a broad understanding of key concepts in applied mathematics​
  • LO2. Create models and solve qualitative and quantitative problems in scientific contexts, using appropriate mathematical and computing techniques as necessary​
  • LO3. Use the principles of applied mathematics to analyse and explore deterministic and stochastic systems​
  • LO4. Evaluate the accuracy of approximate methods and assess their applicability​
  • LO5. Communicate mathematical information deeply and coherently, both orally and through written work to a variety of audiences​​

Unit outlines

Unit outlines will be available 2 weeks before the first day of teaching for the relevant session.