Skip to main content
Unit of study_

NEUR3005: Functional Neuroanatomy

The aim of this unit is to provide students with advanced knowledge of functional neuroanatomy and systems neuroscience, and an appreciation that neuroscience is a constantly evolving field. There will be a detailed exploration of the anatomical structures and pathways that underlie sensation and perception in each of the sensory modalities. The neural circuits and mechanisms that control somatic and autonomic motor systems, motivated behaviours, emotions, and other higher order functions will be explored in great detail based on current neuroscience literature. Practical classes will allow students to identify and learn the functions of critical anatomical structures in human brain and spinal cord specimens. Reading and interpreting images from functional and structural brain imaging techniques will be incorporated into the neuroanatomy practical classes, and develop an appreciation of how these technologies can be used in neuroscience research. The Neuroscience in the Media seminars will develop neuroscience literature searching skills as well as developing critical thinking and analysis of the accuracy of the media portrayal of neuroscience research. Building on these skills and working in small groups, students will re-frame and communicate neuroscience evidence through the production of a short video. Students will also learn the skills required to write an unbiased and accurate popular media article based on a recent neuroscience research paper. This unit will develop key attributes that are essential for science graduates as they move forward in their careers.

Code NEUR3005
Academic unit Department of Medical Sciences
Credit points 6
NEUR3001 or NEUR3901 or NEUR3002 or NEUR3902 or NEUR3905
Assumed knowledge:
Fundamental knowledge of human anatomy and neuroanatomy (ANAT2X10 or MEDS2005 or BMED2402)

At the completion of this unit, you should be able to:

  • LO1. describe the anatomical structures that form the blood brain barrier, as well as the ventricles and cisterns
  • LO2. understand and be able to describe the anatomical structures and pathways that underlie transmission of all special senses (the chemical senses, audition, vision, and the vestibular system), as well as somatosensory information to spinal cord and brain
  • LO3. understand and be able to describe the anatomical structures and pathways that underlie autonomic and somatic motor systems
  • LO4. understand and be able to describe the structure and function of anatomical structures which underlie motivated behaviours, emotions, sleep and memory
  • LO5. outline the neural structures and systems that control sleep and vegetative states
  • LO6. explain the processes that lead to brain development, brain aging and dementia
  • LO7. interpret structural and functional information from various kinds of neural-imaging techniques and understand the possible applications of such technology
  • LO8. identify and trace the major blood vessels, meninges, cisterns and ventricles of the human brain and spinal cord
  • LO9. identify and trace the structures that form the sensory pathways of all the special senses (the chemical senses, audition, vision, and the vestibular system)
  • LO10. identify and trace the cranial nerves, cranial nerve nuclei, thalamic nuclei and cortical regions which transmit and process the sensory modalities
  • LO11. identify all primary sensory and motor areas, as well as major association areas
  • LO12. identify and trace somatic and autonomic motor pathways which control conscious and unconscious motor output
  • LO13. critique the science reported in the New Scientist articles through analysing the content of original research papers
  • LO14. critique and re-frame primary neuroscience papers by producing, as a group, a short video-blog or news segment which is accessible to a non-expert audience
  • LO15. integrate what you have learnt from Neuroscience in the Media to create a 750 word New Scientist style (journalistic) article that it is accessible to non-expert readers.

Unit outlines

Unit outlines will be available 1 week before the first day of teaching for the relevant session.