Skip to main content
Unit of study_

PHYS3036: Condensed Matter and Particle Physics

2024 unit information

Condensed matter physics is the science behind semiconductors and all modern electronics, while particle physics describes the very fabric of our Universe. Surprisingly these two seemingly separate aspects of physics use in part very similar formalisms. This selective unit in the physics major will provide an introduction to both these fields, complemented with experimental labs. You will study the basic constituents of matter, such as quarks and leptons, examining their fundamental properties and interactions. You will gain understanding of extensions to the currently accepted Standard Model of particle physics, and on the relationships between high energy particle physics, cosmology and the early Universe. You will study condensed matter systems, specifically the physics that underlies the electromagnetic, thermal, and optical properties of solids. You will discuss recent discoveries and new developments in semiconductors, nanostructures, magnetism, and superconductivity. You will learn and apply new experimental and data analysis techniques by carrying out in-depth experimental investigations on selected topics in physics, with expert tutoring. In completing this unit you will gain understanding of the foundations of modern physics and develop skills in experimental physics, measurement, and data analysis.

Unit details and rules

Managing faculty or University school:

Physics Academic Operations

Code PHYS3036
Academic unit Physics Academic Operations
Credit points 6
Prerequisites:
? 
(PHYS2011 OR PHYS2911 OR PHYS2921) AND (PHYS2012 OR PHYS2912 OR PHYS2922)
Corequisites:
? 
PHYS3034 OR PHYS3934 OR [(PHYS3042 OR PHYS3942 OR PHYS3043 OR PHYS3943 OR PHYS3044 OR PHYS3944) AND (PHYS3090 OR PHYS3990 OR PHYS3991)]
Prohibitions:
? 
PHYS3099 or PHYS3999 or PHYS3936 or PHYS3068 or PHYS3968 or PHYS3069 or PHYS3969 or PHYS3074 or PHYS3974 or PHYS3080 or PHYS3980
Assumed knowledge:
? 
Students will need to have some knowledge of special relativity, for example from prior study of PHYS2013 or PHYS2913, or from studying Chapter 12 of Introduction to Electrodynamics by D.J. Griffith. (MATH2021 OR MATH2921 OR MATH2061 OR MATH2961 OR MATH2067)

At the completion of this unit, you should be able to:

  • LO1. demonstrate an understanding of key concepts in two areas of physics – particle physics and condensed matter physics
  • LO2. apply these concepts to develop models, and to solve qualitative and quantitative problems in scientific contexts, using appropriate mathematical and computing techniques as necessary
  • LO3. carry out and analyse experiments to measure specific effects
  • LO4. compare and critique experimental approaches
  • LO5. communicate scientific information appropriately, through written work
  • LO6. demonstrate a sense of responsibility, ethical behaviour, and independence as a learner and as a scientist.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 1 2024
Normal day Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 1 2020
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Camperdown/Darlington, Sydney
Semester 1 2022
Normal day Camperdown/Darlington, Sydney
Semester 1 2022
Normal day Remote
Semester 1 2023
Normal day Camperdown/Darlington, Sydney

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.