Unit of study_

# QBUS2810: Statistical Modelling for Business

### 2024 unit information

Statistical analysis of quantitative data is a fundamental aspect of modern business. The pervasiveness of information technology in all aspects of business means that managers are able to use very large and rich data sets. This unit covers a range of methods to model and analyse statistical dependencies in such data, extending the introductory methods in BUSS1020. The methods are useful for detecting, analysing and making inference about patterns and dependences within the data so as to support business decisions. This unit offers an insight into the main statistical methodologies for modelling statistical dependence in both discrete and continuous business data. This provides the information required for a range of specific tasks, e.g. in financial asset valuation and risk measurement, market research, demand and sales forecasting and financial analysis, among others. The unit emphasises real empirical applications in business, finance, accounting and marketing, using modern software tools.

## Unit details and rules

#### Managing faculty or University school:

 Prerequisites: ? Students commencing from 2018: QBUS1040. Pre-2018 continuing students: BUSS1020 or DATA1001 or ECMT1010 or ENVX1001 or ENVX1002 or STAT1021 or ((MATH1005 or MATH1015) and MATH1115) or 6 credit points of MATH units which must include MATH1905 None ECMT2110 This unit relies on mathematical knowledge at the level of the Maths in Business program, including calculus and matrix algebra. Students who do not meet this requirement are strongly encouraged to acquire the needed mathematical skills prior to enrolling in this unit

At the completion of this unit, you should be able to:

• LO1. develop an understanding of the principles of statistical modelling of business-related variables
• LO2. develop a deeper understanding of statistically measuring and analysing relationships between business variables via a range of quantitative models and methods
• LO3. develop proficiency in using relationships between variables and analytic methods to inform and assist business decision making
• LO4. develop introductory skills in how to manage data and in how to extract objective quantitative information from them
• LO5. develop proficiency in a software package, e.g. Python, for analysing and assessing relationships between business variables, and in dealing with large data sets
• LO6. communicate empirical findings using adequate statistical reporting methods and appropriate technical language, as well as layman’s terms.

## Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA   Location Outline
Semester 1 2024
Normal day Camperdown/Darlington, Sydney
Semester 2 2024
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Session MoA   Location Outline
Semester 1 2020
Normal day Camperdown/Darlington, Sydney
Semester 2 2020
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Remote
Semester 2 2021
Normal day Camperdown/Darlington, Sydney
Semester 2 2021
Normal day Remote
Semester 1 2022
Normal day Camperdown/Darlington, Sydney
Semester 1 2022
Normal day Remote
Semester 2 2022
Normal day Camperdown/Darlington, Sydney
Semester 2 2022
Normal day Remote
Semester 1 2023
Normal day Camperdown/Darlington, Sydney
Semester 1 2023
Normal day Remote
Semester 2 2023
Normal day Camperdown/Darlington, Sydney

### Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.