Useful links
Probability Theory lays the theoretical foundations that underpin the models we use when analysing phenomena that involve chance. This unit introduces the students to modern probability theory and applies it to problems in mathematical statistics. You will be introduced to the fundamental concept of a measure as a generalisation of the notion of length and Lebesgue integration which is a generalisation of the Riemann integral. This theory provides a powerful unifying structure that bring together both the theory of discrete random variables and the theory of continuous random variables that were introduce to earlier in your studies. You will see how measure theory is used to put other important probabilistic ideas into a rigorous mathematical framework. These include various notions of convergence of random variables, 0-1 laws, and the characteristic function. You will then synthesise all these concepts to establish the Central Limit Theorem and also verify important results in Mathematical Statistics. These involve exponential families, efficient estimation, large-sample testing and Bayesian methods. Finally you will verify important convergence properties of the expectation-maximisation (EM) algorithm. By doing this unit you will become familiar with many of the theoretical building blocks that are required for any in-depth study in probability or mathematical statistics.
Code | STAT4028 |
---|---|
Academic unit | Mathematics and Statistics Academic Operations |
Credit points | 6 |
Prerequisites:
?
|
None |
---|---|
Corequisites:
?
|
None |
Prohibitions:
?
|
STAT4528 |
Assumed knowledge:
?
|
STAT3X23 or equivalent: that is, a sound working and theoretical knowledge of statistical inference |
At the completion of this unit, you should be able to:
Unit outlines will be available 2 weeks before the first day of teaching for the relevant session.
Key dates through the academic year, including teaching periods, census, payment deadlines and exams.
Enrolment, course planning, fees, graduation, support services, student IT
Code of Conduct for Students, Conditions of Enrollment, University Privacy Statement, Academic Integrity
Academic appeals process, special consideration, rules and guidelines, advice and support
Policy register, policy search
Scholarships, interest free loans, bursaries, money management
Learning Centre, faculty and school programs, Library, online resources
Student Centre, counselling & psychological services, University Health Service, general health and wellbeing