The objectives of this unit are to demonstrate how the granular structure of soil materials controls their engineering behaviour; translate particle micromechanics to improve macroscopic engineering predictions; and establish the intimate connection of geotechnical engineering to other disciplines where granular materials play a pivotal role, including mining engineering, bulk materials handling, and geophysics. Similarly, this course will cohesively connect geotechnical engineering with fluids engineering principles, as well as enhance students' background in materials science. At the end of this unit students will be able to understand and use Discrete Element Method to evaluate and solve geotechnical problems such as rockfall interactions with surrounding terrain. They will also critically analyse pile penetration and silo discharge in light of granular mechanisms; apply soil rheology to carry out parametric study of landslide flows; and understand and use dimensionless analysis principles to predict resistive forces on obstacles. Strong focus will be dedicated for communicating students' results using written methods appropriate for professional engineers.
Unit details and rules
Academic unit | Civil Engineering |
---|---|
Credit points | 6 |
Prerequisites
?
|
None |
Corequisites
?
|
None |
Prohibitions
?
|
None |
Assumed knowledge
?
|
None |
Available to study abroad and exchange students | Yes |
Teaching staff
Coordinator | Itai Einav, itai.einav@sydney.edu.au |
---|