Skip to main content
Unit of study_

DATA1001: Foundations of Data Science

DATA1001 is a foundational unit in the Data Science major. The unit focuses on developing critical and statistical thinking skills for all students. Does mobile phone usage increase the incidence of brain tumours? What is the public's attitude to shark baiting following a fatal attack? Statistics is the science of decision making, essential in every industry and undergirds all research that relies on data. Students will use problems and data from the physical, health, life and social sciences to develop adaptive problem solving skills in a team setting. Taught interactively with embedded technology, DATA1001 develops critical thinking and skills to problem-solve with data. It is the prerequisite for DATA2002.


Academic unit Mathematics and Statistics Academic Operations
Unit code DATA1001
Unit name Foundations of Data Science
Session, year
Semester 2, 2022
Attendance mode Normal day
Location Remote
Credit points 6

Enrolment rules

DATA1901 or MATH1005 or MATH1905 or MATH1015 or MATH1115 or ENVX1001 or ENVX1002 or ECMT1010 or BUSS1020 or STAT1021
Available to study abroad and exchange students


Teaching staff and contact details

Coordinator Diana Warren,
Lecturer(s) Diana Warren ,
Administrative staff Mathematics and Statistics Student Services Office, Carslaw 520
Type Description Weight Due Length
Final exam (Record+) Type B final exam Final exam
Exam testing statistical thinking with given R Output.
60% Formal exam period 2 hours
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9
Assignment Project 1
A data project based on given data.
0% Week 04
Due date: 26 Aug 2022 at 23:59

Closing date: 05 Sep 2022
Self-directed learning till Week 4.
Outcomes assessed: LO1 LO2 LO3 LO9
Assignment group assignment Project 2
A data project based on own survey data.
15% Week 08
Due date: 23 Sep 2022 at 23:59

Closing date: 04 Oct 2022
Self-directed learning till Week 8.
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO9 LO10
Assignment Project 3
A data project based on client data.
15% Week 12
Due date: 28 Oct 2022 at 23:59

Closing date: 07 Nov 2022
Self-directed learning till Week 12.
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9
Small test Evaluate Quizzes
To review learning of the week's topic.
10% Weekly By the end of each designated week.
Outcomes assessed: LO1 LO9 LO8 LO7 LO6 LO5 LO4 LO3 LO2
group assignment = group assignment ?
Type B final exam = Type B final exam ?
  • Evaluate Quizzes: The  Evaluate Quizzes are randomised quizzes on Canvas. They are designed to help you review your learning of the week’s topic. They are worth 10%. The best 10 of your 11 Quizzes will count, making each worth 1%. The better mark principle will be used for the total marks on the Quizzes so do not submit an application for Special Consideration or Special Arrangements if you miss a Quiz. The better mark principle means that the total quiz mark counts if and only if it is better than or equal to 10% of your exam mark. If your total quiz mark is less than 10% of your exam mark, then 10% of your exam mark will be used instead. This allows you to improve in the exam.
  • Projects: The data projects are designed to develop your statistical thinking and computational skills. They must be submitted electronically, as an HTML file via the DATA1001 Canvas site by the deadline. It is your responsibility to check that your project has been submitted correctly, otherwise it will not be marked. The better mark principle does not apply to the projects, as they assess different learning outcomes to the final exam. Late submissions will receive a penalty. A mark of zero will be awarded for all submissions more than 10 days past the original due date. Further extensions past this time will not be permitted.
  • Final exam: There is an examination of 2 hours duration held on Canvas. If a second replacement exam is required, this exam may be delivered via an alternative assessment method, such as a viva voce (oral exam). The alternative assessment will meet the same learning outcomes as the original exam. The format of the alternative assessment will be determined by the unit coordinator.
  • Simple extensions: No simple extensions are given in first year units in the School of Mathematics and Statistics.

Assessment criteria

The University awards common result grades, set out in the Coursework Policy 2014 (Schedule 1).

As a general guide, a high distinction indicates work of an exceptional standard, a distinction a very high standard, a credit a good standard, and a pass an acceptable standard.

Result name

Mark range


High distinction

85 - 100

Representing complete or close to complete mastery of the material.


75 - 84

Representing excellence, but substantially less than complete mastery.


65 - 74

Representing a creditable performance that goes beyond routine knowledge and understanding, but less than excellence.


50 - 64

Representing at least routine knowledge and understanding over a spectrum of topics and important ideas and concepts in the course.


0 - 49

When you don’t meet the learning outcomes of the unit to a satisfactory standard.

For more information see

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

Special consideration

If you experience short-term circumstances beyond your control, such as illness, injury or misadventure or if you have essential commitments which impact your preparation or performance in an assessment, you may be eligible for special consideration or special arrangements.

Academic integrity

The Current Student website provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

You may only use artificial intelligence and writing assistance tools in assessment tasks if you are permitted to by your unit coordinator, and if you do use them, you must also acknowledge this in your work, either in a footnote or an acknowledgement section.

Studiosity is permitted for postgraduate units unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission.

WK Topic Learning activity Learning outcomes
Week 01 Design of experiments Lecture and tutorial (5 hr) LO1 LO2 LO9 LO10
Week 02 Data & graphical summaries Lecture and tutorial (5 hr) LO3
Week 03 Numerical summaries Lecture and tutorial (5 hr) LO3
Week 04 Normal model Lecture and tutorial (5 hr) LO4
Week 05 Linear model Lecture and tutorial (5 hr) LO5
Week 06 Project Preparation Week Project (5 hr) LO1 LO2 LO3 LO4 LO5 LO9 LO10
Week 07 Understanding chance Lecture and tutorial (5 hr) LO6
Week 08 Chance variability (The Box Model) Lecture and tutorial (5 hr) LO6
Week 09 Sample surveys Lecture and tutorial (5 hr) LO6
Week 10 Hypothesis testing Lecture and tutorial (5 hr) LO7 LO8
Week 11 Tests for a mean Lecture and tutorial (5 hr) LO7 LO8
Week 12 Tests for a relationship Lecture and tutorial (5 hr) LO7 LO8

Attendance and class requirements

Two modes of delivery

1. This unit is blended, which means that you will have direct instruction from teachers in lecture and labs, and also be responsible for your own learning at home.

2. The unit is delivered in 2 modes: 'in-person' and 'online/remote'. 

3. Attendance is not recorded in the lectures. Attendance is recorded in the labs, but is not for marks.

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Required readings

For optional extra reading, see Statistics (4th Edition) – Freedman, Pisani, and Purves (2007). An e-text version is available.

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University’s graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. articulate the importance of statistics in a data-rich world, including current challenges such as ethics, privacy and big data
  • LO2. identify the study design behind a dataset and how the study design affects context specific outcomes
  • LO3. produce, interpret and compare graphical and numerical summaries, using base R and ggplot
  • LO4. apply the normal approximation to data, with consideration of measurement error
  • LO5. model and explain the relationship between 2 variables using linear regression
  • LO6. use the box model to describe chance and chance variability, including sample surveys and the central limit theorem
  • LO7. given real multivariate data and a problem, formulate an appropriate hypothesis and perform a range of hypothesis tests
  • LO8. interpret the p-value, conscious of the various pitfalls associated with testing
  • LO9. critique the use of statistics in media and research papers in a wide variety of data contexts, with attention to confounding and bias
  • LO10. perform data exploration in a team, and communicate the findings via oral presentations and reproducible reports, with interrogation.

Graduate qualities

The graduate qualities are the qualities and skills that all University of Sydney graduates must demonstrate on successful completion of an award course. As a future Sydney graduate, the set of qualities have been designed to equip you for the contemporary world.

GQ1 Depth of disciplinary expertise

Deep disciplinary expertise is the ability to integrate and rigorously apply knowledge, understanding and skills of a recognised discipline defined by scholarly activity, as well as familiarity with evolving practice of the discipline.

GQ2 Critical thinking and problem solving

Critical thinking and problem solving are the questioning of ideas, evidence and assumptions in order to propose and evaluate hypotheses or alternative arguments before formulating a conclusion or a solution to an identified problem.

GQ3 Oral and written communication

Effective communication, in both oral and written form, is the clear exchange of meaning in a manner that is appropriate to audience and context.

GQ4 Information and digital literacy

Information and digital literacy is the ability to locate, interpret, evaluate, manage, adapt, integrate, create and convey information using appropriate resources, tools and strategies.

GQ5 Inventiveness

Generating novel ideas and solutions.

GQ6 Cultural competence

Cultural Competence is the ability to actively, ethically, respectfully, and successfully engage across and between cultures. In the Australian context, this includes and celebrates Aboriginal and Torres Strait Islander cultures, knowledge systems, and a mature understanding of contemporary issues.

GQ7 Interdisciplinary effectiveness

Interdisciplinary effectiveness is the integration and synthesis of multiple viewpoints and practices, working effectively across disciplinary boundaries.

GQ8 Integrated professional, ethical, and personal identity

An integrated professional, ethical and personal identity is understanding the interaction between one’s personal and professional selves in an ethical context.

GQ9 Influence

Engaging others in a process, idea or vision.

Outcome map

Learning outcomes Graduate qualities
No changes have been made since this unit was last offered.

Work, health and safety

We are governed by the Work Health and Safety Act 2011, Work Health and Safety Regulation 2011 and Codes of Practice. Penalties for non-compliance have increased. Everyone has a responsibility for health and safety at work. The University’s Work Health and Safety policy explains the responsibilities and expectations of workers and others, and the procedures for managing WHS risks associated with University activities.


The University reserves the right to amend units of study or no longer offer certain units, including where there are low enrolment numbers.

To help you understand common terms that we use at the University, we offer an online glossary.